K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2018

\(B=\left(1-\frac{1}{x^2}\right)\left(1-\frac{1}{y^2}\right)\)

\(=\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)\left(1-\frac{1}{x}\right)\left(1-\frac{1}{y}\right)\)

\(=\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)\cdot\frac{x-1}{x}\cdot\frac{y-1}{y}\)

\(=\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)\cdot\frac{\left(-x\right)\left(-y\right)}{xy}\)

\(=\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)\)

\(=1+\frac{1}{x}+\frac{1}{y}+\frac{1}{xy}=1+\frac{x+y}{xy}+\frac{1}{xy}\)

\(=1+\frac{2}{xy}\ge1+\frac{2}{\frac{\left(x+y\right)^2}{4}}=1+\frac{2}{\frac{1}{4}}=1+8=9\)

Vậy GTNN của B = 9 khi \(x=y=\frac{1}{2}\)

4 tháng 2 2019

O A C B D I M N E F P H

a) Kẻ đường kính DP của (O), ta có: BD vuông góc BP. Mà BD vuông góc AC nên BP // AC

=> (AP = (BC => (AB = (CP => AB = CP => AB2 + CD2 = CP2 + CD2 = DP2 = 4R2 (ĐL Pytagore)

Tương tự: AD2 + BC2 = 4R2 => ĐPCM.

b) Ta có: AB2 + BC2 + CD2 + DA2 = 4R2 + 4R2 = 8R2 

Ta lại có: AC2 + BD2 = IA2 + IB2 + IC2 + ID2 + 2.IB.ID + 2.IA.IC = AB2 + CD2 + 4.IE.IF

= 4R2 + 4(R+d)(R-d) = 4R2 + 4R2 - 4d2 = 8R2 - 4d2 

c) Gọi tia NI cắt AB tại H. Dễ thấy: ^BIH = ^NID = ^NDI = ^IAB = 900 - ^IBA => IN vuông góc AB.

C/m tương tự, ta có: IM vuông góc CD => ĐPCM.

d) Đường tròn (O): Dây AB, M trung điểm AB => OM vuông góc AB. Mà AB vuông góc IN => OM // IN

Tương tự ON // IM. Do đó: Tứ giác OMIN là hình bình hành (đpcm).

e) Vì tứ giác OMIN là hình bình hành nên MN đi qua trung điểm OI. Mà OI cố định NÊN trung điểm của OI cũng cố định nên ta có đpcm.

4 tháng 2 2019

Chậc -_- bài này mình làm được lâu rồi bạn à :V Nhưng cũng cảm ơn , tớ nhờ cậu bài khác mà :(

30 tháng 12 2018

\(Y=\frac{x^2+x+1}{x^2+2x+2}=1-\frac{x+1}{x^2+2x+2}.Y_{min}\Leftrightarrow\frac{x+1}{x^2+2x+2}.Dat:GTLN\)

\(1-\frac{x+1}{x^2+2x+2}\ge\frac{1}{2}\)

Dấu "=" xảy ra khi:

x=0

30 tháng 12 2018

Giải thử bằng Delta

Bài này hơi khó nên mik ko làm được

Thông cảm nha !

30 tháng 12 2018

gọi số hàng ghế ban đầu là x ( hàng )( đk x>0)

\(\Rightarrow\)số hàng ghế sau khi thêm một hàng là x+1 ( hàng)

số ghế trên một hàng ban đầu là \(\frac{300}{x}\)(ghế) 

số ghế trên một hàng sau khi thêm hai ghế và một hàng là \(\frac{357}{x+1}\)(ghế)

ta có phương trình : \(\frac{357}{x+1}\)=\(\frac{300}{x}\)+2

\(\Rightarrow\)357x =300x+300 +2x\(^2\)+2

\(\Leftrightarrow\)-2x\(^2\)+57x-302=0

\(\Leftrightarrow\)2x\(^2\)-57x+302=0

giải phương trình bậc hai 

đối chiếu điều kiện 

kết luận

29 tháng 12 2018

Vì đường thẳng y = ax + b đi qua điểm ( 3;-5 )

=> -5 = 3a + b

Vì đường thẳng y = ax + b đi qua điểm ( -1 ; 3/2 )

=> 3/2 = -a + b

Giải hệ phương trình :

 3a + b = -5

-a + b = 3/2

Ta có : 3a + b - ( -a + b ) = 3a + b + a - b = 4a = -5 - 3/2 = -13/2

=> a = -13/2 : 4 = -13/8

Thay a = -13/8 vào  - a + b = 3/2 ta được :

     13/8 + b = 3/2

 =>  b = 3/2 - 13/8 = -1/8

Vậy a = -13/8 ; b = -1/8

30 tháng 12 2018

Vì đường thẳng y = ax + b đi qua điểm ( 3;-5 )

=> -5 = 3a + b

Vì đường thẳng y = ax + b đi qua điểm ( -1 ; 3/2 )

=> 3/2 = -a + b

Giải hệ phương trình :

 3a + b = -5

-a + b = 3/2

Ta có : 3a + b - ( -a + b ) = 3a + b + a - b = 4a = -5 - 3/2 = -13/2

=> a = -13/2 : 4 = -13/8

Thay a = -13/8 vào  - a + b = 3/2 ta được :

     13/8 + b = 3/2

 =>  b = 3/2 - 13/8 = -1/8

Vậy a = -13/8 ; b = -1/8

30 tháng 12 2018

\(2y^2+2xy+x+3y-13=0\)

\(\Leftrightarrow2y\left(y+x\right)+x+y+2y=13\)

\(\Leftrightarrow\left(x+y\right)\left(2y+1\right)+2y+1=14\)

\(\Leftrightarrow\left(2y+1\right)\left(x+y+1\right)=14\)

Rồi bạn làm từng cặp ra nhé! 

6 tháng 3 2019

VINSCHOOL