Tính gt biểu thức
\(P=\frac{\left(2003^2\cdot2013+31\cdot2004-1\right)\left(2003\cdot2008+4\right)}{2004\cdot2005\cdot2006\cdot2007\cdot2008}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này cũng ko khó, bạn chú ý nhé !!
Có: a1, a2, a3, ....., a2020 có tổng là 20192020
=> a1+ a2+ a3 +...+ a2020 chia hết cho 3
Áp dụng bổ đề x^3-x chia hết cho 3
=> a1 ^3 -a1 chia hết cho 3
a2 mũ 3 - a2 chia hết cho 3
....
a2019^3-a2019 chia hết cho 3
=> a1 mũ 3 + a2 mũ 3 + ...+a 2019 mũ 3 - (a1+a2+...+a^2019) chia hết cho 3
Có a1, a2, a3, ....., a2020 chia hết cho 3
=> a1 mũ 3 + a2 mũ 3 + ...+a 2019 mũ 3 chia hết cho 3
=> đpcm
Cm bổ đề x^3-x chia hết cho 3 nhé
=x(x-1)(x+1). Do là tích 3 số nguyên liên tiếp => Chia hết cho 3
Xin lỗi các bạn:
CMR : a13 + a23 +a33 +....+ a20203 chia hết cho 3
Ta có
\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\) hay \(M>1\)
\(M=\left(1-\frac{a}{b+a}\right)+\left(1-\frac{c}{b+c}\right)+\left(1-\frac{a}{a+c}\right)< 3-\left(\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}\right)\)
\(=3-1=2\) hay \(M>2\)
Vậy \(1< M< 2\). Do đó M k thể là số nguyên dương
À bài nãy dễ thôi bạn. Lên cao bn sẽ gặp 1 dạng biến hóa nâng cao từ dạng này !!!
Do a,b,c là số nguyên dương
=> a/(a+b) >a/(a+b+c)
b/(b+c)>b/(a+b+c)
c/(c+a)>c/(a+b+c)
=> a/(a+b) + b/(b+c) + c/(c+a)>(a+b+c)/(a+b+c)=1
Lại có
a/(a+b)<(a+c)/(a+b+c)
b/(c+b)<(a+b)/(a+b+c)
c/(a+c)<(b+c)/(a+b+c)
=> a/(a+b) + b/(b+c) + c/(c+a)<2(a+b+c)/(a+b+c)=2
=> 1< a/(a+b) + b/(b+c) + c/(c+a) < 2
=> a/(a+b) + b/(b+c) + c/(c+a) không là số nguyên
Áp dụng BĐT Cô - si cho 2 số không âm:
\(\frac{x^6}{y^2}+x^2y^2\ge2\sqrt{\frac{x^8y^2}{y^2}}=2x^4\)
\(\frac{y^6}{x^2}+x^2y^2\ge2\sqrt{\frac{y^8x^2}{x^2}}=2y^4\)
Cộng từng các BĐT trên:
\(\frac{x^6}{y^2}+2x^2y^2+\frac{y^6}{x^2}\ge2x^4+2y^4\)
\(\Leftrightarrow\frac{x^6}{y^2}+\frac{y^6}{x^2}\ge x^4+x^4+y^4+y^4-2x^2y^2\)
\(\Leftrightarrow\frac{x^6}{y^2}+\frac{y^6}{x^2}\ge x^4+y^4+\left(x^2-y^2\right)^2\ge x^4+y^4\)
Vậy \(\frac{x^6}{y^2}+\frac{y^6}{x^2}\ge x^4+y^4\)
(Dấu "="\(\Leftrightarrow\orbr{\begin{cases}x=y\\x=-y\end{cases}}\))
Bn lay cai kim rut ngoi ra,roi sau do lay ngoi khac gan vao la dc.
minh chi biet vay thoi,neu bn so hu ngoi viet thi dung lam theo.
Giả sử tồn tại cặp số nguyên (x; y) sao cho \(x^2-2018=y^2\)
\(\Rightarrow x^2-y^2=2018\)
\(\Leftrightarrow\left(x+y\right)\left(x-y\right)=2018\)
Dễ c/m: x và y phải cùng chẵn hoặc cùng lẻ (Vì nếu 1 trong 2 số x,y lẻ thì tích (x=y)(x-y) lẻ, vô lí)
Lúc đó \(\hept{\begin{cases}x+y⋮2\\x-y⋮2\end{cases}}\)
\(\Rightarrow\left(x-y\right)\left(x+y\right)⋮4\)
Mà 2018 không chia hết cho 4 nên điều g/s là sai
Vậy không tồn tại cặp số nguyên x,y thoả mãn \(x^2-2018=y^2\)(đpcm)
Ta có : x2 - 2018 = y2
=> x2 - y2 = 2018
=> (x + y)(x - y) = 2018
Nếu x ; y \(\inℤ\)ta có : 2018 = 1.2018 = 2.1009 = (-1).(-2018) = (-2).(-1009)
Lập bảng xét 8 trường hợp ta có :
x - y | 1 | 2018 | 2 | 1009 | -1 | -2018 | -1009 | -2 |
x + y | 2018 | 1 | 1009 | 2 | -2018 | -1 | -2 | -1009 |
x | 2019/2 | 2009/2 | 1011/2 | 1011/2 | -2019/2 | -2019/2 | -1011/2 | -1011/2 |
y | 2017/2 | -2007/2 | 1007/2 | -1007/2 | -2017/2 | 2017/2 | -1007/2 | 1007/2 |
=> Không tồn tại cặp số nguyên x,y thỏa mãn
\(P=\frac{\left(2003^2\cdot2013+31\cdot2004-1\right)\left(2003\cdot2008+4\right)}{2004\cdot2005\cdot2006\cdot2007\cdot2008}\)
Đặt a=2004 ta có
\(P=\frac{\left[\left(x-1\right)^2\cdot\left(a+9\right)+31\cdot a-1\right]\left[\left(a-1\right)\left(a+4\right)+4\right]}{a\left(a+1\right)\left(a+2\right)\left(a+3\right)\left(a+4\right)}\)
\(=\frac{\left[\left(a^2-2a+1\right)\left(a+9\right)+31a-1\right]\left[\left(a^2+3a-4\right)+4\right]}{a\left(a+1\right)\left(a+2\right)\left(a+3\right)\left(a+4\right)}\)
\(=\frac{\left(a^3+9a^2-2a^2-18a+a+9+31a-1\right)\left(a^2+3a\right)}{a\left(a+1\right)\left(a+2\right)\left(a+3\right)\left(a+4\right)}\)
\(=\frac{\left(a^3+7a^2+14a+8\right)\left(a^2+3a\right)}{a\left(a+1\right)\left(a+2\right)\left(a+3\right)\left(a+4\right)}\)
\(=\frac{a\left(a+1\right)\left(a+2\right)\left(a+3\right)\left(a+4\right)}{a\left(a+1\right)\left(a+2\right)\left(a+3\right)\left(a+4\right)}=1\)
Vậy \(P=1\)
Ui ko khó đâu chỉ lắm số thôi bạn ạ ~~~
Ta xét tử số: (2003^2.2013+31.2004-1)(2003.2008+4)
=[2003^2(2003+10)+(2003+1).31-1][2003(2003+5)+4]
=[2003^3+10.2003^2+31.2003+30][2003^2+5.2003+4]
Đặt 2003=a cho đỡ phức tạp
=(a^3+10a^2+31a+30)(a^2+5a+4)
Đến đây bạn phân tích đa thức thành nhân tử thôi
=(a+5)(a+2)(a+3)(a+1)(a+4)
Xét mẫu số khi đặt 2003=a
=> MS=(a+1)(a+2)(a+3)(a+4)(a+5)
=> P=1
Vậy P=1.