Có tất cả bao nhiêu cách chứng minh 3 đường thẳng đồng qui tại 1 điểm?
Cảm ơn các bạn!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A C B I H K
Hình vẽ hơi xấu trìn hbafy nhớ vẽ đẹp =)
Gọi H,I,K lần lượt là các chân cao đường cao của A,C,B đường thẳng d,AH = 12cm BK= 16cm
=> CI là khoản cách từ C đến đường thẳng d
Ta thấy ABKH là hình thang nằm nghiêng (có thể quan sát hình) (đáy AH và BK) là đường trung bình CI
Từ đó \(\frac{\left(AH+BK\right)}{2}=\frac{\left(12+16\right)}{2}=14cm\)
\(x=1-2y\)
=> \(P=\left(1-2y\right)y=-2y^2+y\) không có giá trị nhỏ nhất.
Nguyễn Linh Chi chắc đề là tìm Max cô ạ=( cô off lâu quá=(
Từ x + 2y = 1 => x = 1 - 2y
Ta có : P = xy = ( 1 - 2y )y = -2y2 + y = -2( y2 - 1/2y + 1/16 ) +1/8
= -2( y - 1/4 )2 + 1/8 ≤ 1/8
hay P ≤ 1/8 . Dấu "=" xảy ra <=> x = 1/2 ; y = 1/4
Vậy ...
a) Giá trị của \(\frac{x}{x^2-4}+\frac{3}{\left(x+2\right)^2}\) được xác định
\(\Leftrightarrow x^2-4\ne0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\ne0\)
\(\Leftrightarrow\hept{\begin{cases}x-2\ne0\\x+2\ne0\end{cases}}\)
\(\Leftrightarrow x\ne\pm2\)
b) Giá trị của biểu thức bằng 0
\(\Leftrightarrow\frac{x}{x^2-4}+\frac{3}{\left(x+2\right)^2}=0\)
\(\Leftrightarrow\frac{x}{\left(x+2\right)\left(x-2\right)}+\frac{3}{\left(x+2\right)^2}=0\)
\(\Leftrightarrow\frac{x\left(x+2\right)+3\left(x-2\right)}{\left(x-2\right)\left(x+2\right)^2}=0\)
\(\Leftrightarrow x^2+2x+3x-6=0\)
\(\Leftrightarrow x^2+6x-x-6=0\)
\(\Leftrightarrow x\left(x+6\right)-\left(x+6\right)=0\)
\(\Leftrightarrow\left(x+6\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+6=0\\x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-6\\x=1\end{cases}}}\)( Thỏa mãn điều kiện xác định )
Vậy ......................
Có x^3+y^3=(x+y)^3-3xy(x+y)
=> x^3+y^3=27^3-3.24.27
=> x^3+y^3=17739.
Vậy x^3+y^3==17739
Ta có: x3 + y3 = (x + y)(x2 - xy + y2) = (x + y)(x2 + 2xy + y2) - 3xy(x + y)
= (x + y)(x + y)2 - 3xy(x + y)
= (x + y)3 - 3xy(x + y)
= 273 - 3.24.27
= 17739
Đặt \(A=\left(x+3\right)\left(x^2-3x+9\right)-\left(54+x^3\right)\)
\(A=x^3+27-54-x^3\)
\(A=27\)
Thay x = 27 vào biểu thức , ta có : A = 27
Vậy........................
có \(AB^2+AC^2=BC^2\)
\(4^2+7^2=BC^2\)
\(BC^2=65\)
\(BC=\sqrt{65}\)
ᵈʳᵉᵃᵐ乡๖ۣۜH๖ۣۜA๖ۣۜY๖ۣۜA๖ۣۜT๖ۣۜO sai rồi, đây là tam giác thường, và bạn cx chưa cm là tam giác vuông, nên k sử dunhj đc định lí Ptago đâu/
a) Để A có nghĩa thì :
\(3x^3-x^2-3x+1\ne0\)
\(\Leftrightarrow x^2\left(3x-1\right)-\left(3x-1\right)\ne0\)
\(\Leftrightarrow\left(3x-1\right)\left(x^2-1\right)\ne0\)
\(\Leftrightarrow\left(3x-1\right)\left(x-1\right)\left(x+1\right)\ne0\)
\(\Leftrightarrow\hept{\begin{cases}x\ne\frac{1}{3}\\x\ne1\\x\ne-1\end{cases}}\)
ĐKXĐ : \(\hept{\begin{cases}x\ne\frac{1}{3}&x\ne\pm1&\end{cases}}\)
\(\left(x-5\right)\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\\x=3\end{cases}}}\)
\(\Rightarrow x=\left\{3;5\right\}\)
Vậy ...................
4 nha bn
Trả lời :
Có 7 cách chứng minh :
1. Tìm giao của hai đường thẳng, sau đó chứng minh đường thẳng thứ ba đi qua giao điểm đó .
2. Chứng minh một điểm thuộc ba đường thẳng đó.
3. Sử dụng tính chất đồng quy trong tam giác:
* Ba đường thẳng chứa các đường trung tuyến.
* Ba đường thẳng chứa các đường phân giác.
* Ba đường thẳng chứa các đường trung trực.
* Ba đường thẳng chứa các đường các đường cao.
4. Sử dụng tính chất các đường thẳng định ra trên hai đường thẳng song song những đoạn thẳng tỷ lệ.
5. Sử dụng chứng minh phản chứng
6. Sử dụng tính thẳng hàng của các điểm
7. Chứng minh các đường thẳng đều đi qua một điểm.
~ HT ~