K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2023

Để \(\dfrac{10n^2+9n+4}{20n^2+20+9}\) tối giản

\(\Rightarrow10n^2+9n+4⋮1;20n^2+20n+9⋮1\left(n\in N\right)\)

\(\Rightarrow2\left(10n^2+9n+4\right)-\left(20n^2+20n+9\right)⋮1\)

\(\Rightarrow20n^2+18n+8-20n^2-20n+9⋮1\)

\(\Rightarrow-2n-1⋮1\) (luôn đúng \(\forall n\in N\))

\(\Rightarrow dpcm\)

24 tháng 7 2023

Chứng minh rằng với mọi số tự nhiên n thì phân số 10�2+9�+420�2+20�+920n2+20n+910n2+9n+4 tối giản

Để chứng minh rằng tích ab chia hết cho 6, ta cần chứng minh rằng một trong hai số a hoặc b chia hết cho 2 và một trong hai số a hoặc b chia hết cho 3.

Giả sử a chia hết cho 2, khi đó a có thể là 2, 4, 6 hoặc 8. Ta sẽ xét từng trường hợp:

  1. Nếu a = 2, thì n = 10a + b = 20 + b. Vì n > 3, nên b > 0. Khi đó, tích ab = 2b chia hết cho 2.

  2. Nếu a = 4, thì n = 10a + b = 40 + b. Vì n > 3, nên b > -37. Khi đó, tích ab = 4b chia hết cho 2.

  3. Nếu a = 6, thì n = 10a + b = 60 + b. Vì n > 3, nên b > -57. Khi đó, tích ab = 6b chia hết cho 2.

  4. Nếu a = 8, thì n = 10a + b = 80 + b. Vì n > 3, nên b > -77. Khi đó, tích ab = 8b chia hết cho 2.

Ta đã chứng minh được rằng nếu a chia hết cho 2, thì tích ab chia hết cho 2.

Tiếp theo, ta chứng minh rằng một trong hai số a hoặc b chia hết cho 3. Ta có thể sử dụng phương pháp tương tự như trên để chứng minh điều này.

Vì tích ab chia hết cho cả 2 và 3, nên tích ab chia hết cho 6.

Vậy, ta đã chứng minh được rằng nếu n = 10a + b (a, b  N, 0 < a < 10), thì tích ab chia hết cho 6.

10 tháng 12 2023

Rảnh à?

 

24 tháng 7 2023

\(n^5+1 ⋮n^3+1\)

\(\Rightarrow n^2\left(n^3+1\right)-\left(n^2-1\right)⋮n^3+1\)

\(\Rightarrow\left(n^2-1\right)⋮\left(n+1\right)\left(n^2-n+1\right)\)

\(\Rightarrow\left(n+1\right)\left(n-1\right)⋮\left(n+1\right)\left(n^2-n+1\right)\)

\(\Rightarrow\left(n-1\right)⋮\left(n^2-n+1\right)\)

\(\Rightarrow n\left(n-1\right)-\left(n^2-n+1\right)⋮n^2-n+1\)

\(\Rightarrow-1⋮n^2-n+1\)

Trường hợp 1:

\(n^2-n+1=1\Rightarrow n\left(n-1\right)=0\Rightarrow n=0;n=1\)

Trường hợp 2:

\(n^2-n+1=-1\left(a\right)\)

Vì \(n^2-n+1=n^2-n+\dfrac{1}{4}-\dfrac{1}{4}+1=\left(n-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

\(\Rightarrow\left(a\right)\) vô lý

Vậy \(n=0;n=1\)

24 tháng 7 2023

\(P=n^3+n+2\)

\(=\left(n^3+1\right)+\left(n+1\right)\)

\(=\left(n+1\right).\left(n^2-n+1\right)+n+1\)

\(=\left(n+1\right).\left(n^2-n+2\right)\)

Nhận thấy với \(n\inℕ^∗\Rightarrow n+1>0;n^2-n+2>0\)

nên P là hợp số 

24 tháng 7 2023

Một. Khai triển vế trái của phương trình:
(x-3)(x+3) = x(x+3) - 3(x+3) = x^2 + 3x - 3x - 9 = x^2 - 9

Khai triển vế phải của phương trình:
(x-5)^2 = (x-5)(x-5) = x(x-5) - 5(x-5) = x^2 - 5x - 5x + 25 = x^2 - 10x + 25

Đặt hai cạnh bằng nhau:
x^2 - 9 = x^2 - 10x + 25

Trừ x^2 từ cả hai phía:
-9 = -10x + 25

Trừ 25 từ cả hai vế:
-34 = -10 lần

Chia cả hai vế cho -10:
x = 3,4

b. Khai triển vế trái của phương trình:
(2x+1)^2 - 4x(x-1) = (2x+1)(2x+1) - 4x^2 + 4x = 4x^2 + 2x + 2x + 1 - 4x^2 + 4x = 8x + 1

Đặt vế trái bằng 17:
8x + 1 = 17

Trừ 1 cho cả hai vế:
8x = 16

Chia cả hai vế cho 8:
x = 2

c. Khai triển vế trái của phương trình:
(3x-2)(3x+2) - 9(x-1)x = (9x^2 - 4) - 9x^2 + 9x - 9x = -4 + 9x

Đặt vế trái bằng 0:
-4 + 9x = 0

Thêm 4 vào cả hai bên:
9x = 4

Chia cả hai vế cho 9:
x = 4/9

d. Khai triển vế trái của phương trình:
(3-x)^3 - (x+3)^3 = (27 - 9x + x^2) - (x^3 + 9x^2 + 27) = 27 - 9x + x^2 - x^3 - 9x^2 - 27 = -x^3 - 8x^2 - 9x

Đặt vế trái bằng 36x^2 - 54x:
-x^3 - 8x^2 - 9x = 36x^2 - 54x

Cộng x^3 + 8x^2 + 9x vào cả hai vế:
0 = 37x^2 - 63x

Chia cả hai vế cho x:
0 = 37x - 63

Thêm 63 vào cả hai bên:
63 = 37 lần

Chia cả hai vế cho 37:
x = 63/37

24 tháng 7 2023

\(A=x^2-x+3=x^2-x+\dfrac{1}{4}-\dfrac{1}{4}+3=\left(x-2\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\left(\left(x-2\right)^2\ge0\right)\)

\(\Rightarrow Min\left(A\right)=\dfrac{11}{4}\)

\(B=x^2-4x+1=x^2-4x+4-4+1=\left(x-2\right)^2-3\ge-3\left(\left(x-2\right)^2\ge0\right)\)

\(\Rightarrow Min\left(B\right)=-3\)

Câu C bạn xem lại đề

\(D=3-4x-x^2=3+4-4-4x-x^2=7-\left(x^2+4x+4\right)=7-\left(x+2\right)^2\le7\left(-\left(x+2\right)^2\le0\right)\)

\(\Rightarrow Max\left(D\right)=7\)

24 tháng 7 2023

\(A=x^2-2.\dfrac{1}{2}.x+\left(\dfrac{1}{2}\right)^2+\dfrac{11}{4}\\ =\left(x-\dfrac{1}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\forall x\in R\)

Vậy GTNN của A là 11/4 khi x=1/2