Cho hàm số y = f(x)=\(\sqrt{1-x}\)+(a2 - a + 1)\(\sqrt{x+a^2}\)Tìm a để hàm số là hàm số chẵn
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
N
5 tháng 1 2020
\(\text{Condition}:x,y\ge0\)
\(\hept{\begin{cases}x^2+2x=4-\sqrt{y}\left(M_1\right)\\y^2+2y=4-\sqrt{x}\left(M_2\right)\end{cases}}\)
\(\left(M_1\right)-\left(M_2\right)\Leftrightarrow\left(x^2-y^2\right)+2\left(x-y\right)+\left(\sqrt{x}-\sqrt{y}\right)=0\)
\(\Leftrightarrow\left(x+y\right)\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)+2\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)+\left(\sqrt{x}-\sqrt{y}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=y\\\left(x+y\right)\left(\sqrt{x}+\sqrt{y}\right)+2\left(\sqrt{x}+\sqrt{y}\right)+1=0\left(M_3\right)\end{cases}}\)
x=0 khong phai nghiem PT\(\Rightarrow M_3\)(fail)
Thay x=y vao
:D
ND
0
TXĐ: D = [\(-a^2\); 1 ]
\(f\left(x\right)=\sqrt{1-x}+\left(a^2-a+1\right)\sqrt{x+a^2}\)
\(f\left(-x\right)=\sqrt{1+x}+\left(a^2-a+1\right)\sqrt{a^2-x}\)
Để a là hàm số chẵn : \(f\left(x\right)=f\left(-x\right)\) với mọi x thuộc TXĐ D.
<=> \(\hept{\begin{cases}\sqrt{1-x}=\left(a^2-a+1\right)\sqrt{a^2-x}\\\sqrt{1+x}=\left(a^2-a+1\right)\sqrt{a^2+x}\end{cases}}\)
<=> \(\hept{\begin{cases}a^2-a+1=1\\a^2=1\end{cases}}\Leftrightarrow a=1\)thử lại thỏa mãn
Vậy a = 1.