cho tam giac ABC can tai A, M la 1 diem nam tren BC,MB<MC ke ME//AC,MF//AB N la diem doi xung voi M qua EF,AN cat BC tai H chung minh HB.HC=HN.HA
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


ND
16 tháng 11 2019
Ta có:
E là trung điểm của AD (gt), F là trung điểm của BC (gt) nên EF là đường trung bình của hình thang ABCD.
\(\Rightarrow\) EF // CD hay EF // CH.
\(\Delta\)AHD vuông tại H có HE là đường trung tuyến thuộc cạnh huyền AD.
Ta có: HE = ED = \(\frac{1}{2}\) AD (tính chất tam giác vuông)
\(\Rightarrow\Delta\) EDH cân tại E \(\Rightarrow\widehat{D}\) = \(\widehat{H}\) 1(tính chất tam giác cân)
\(\widehat{D}\)=\(\widehat{C}\)(vì ABCD là hình thang cân)
\(\Rightarrow\)\(\widehat{H}\)1 = \(\widehat{C}\)\(\Rightarrow\) EH // CF (vì có cặp góc đồng vị bằng nhau)
Vậy tứ giác EFCH là hình bình hành.
#Trang