Tìm \(A_{min}=am^2+bn^2+cp^2+dq^2+um+vn+wp+fq+k\) với \(a,b,c,d,u,v,w,f,k\) là hằng số
các bạn thử làm dạng tổng quát:v
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M A C D B E F K O
a
Xét tam giác AEM và tam giác CBM có:
\(AM=MC\)
\(ME=MB\)
\(\Rightarrow\Delta AEM=\Delta CBM\left(2cgv\right)\)
\(\Rightarrow\widehat{EAM}=\widehat{ECB}\)
Mà \(\widehat{ECM}+\widehat{MBC}=90^0\Rightarrow\widehat{EAM}+\widehat{MBC}=90^0\Rightarrowđpcm\)
b
Gọi O là giao điểm của DM và AC
Xét tam giác CAK vuông tại A có KO là đường trung tuyến ứng với cạnh huyền
\(\Rightarrow KO=\frac{1}{2}AC\)
Mà \(AC=BD\Rightarrow KO=\frac{1}{2}MD\Rightarrow\Delta KMD\) vuông tại K
\(\Rightarrow\widehat{DKM}=90^0\left(1\right)\)
c
Chứng minh tương tự \(\Delta MKF\) vuông tại K
\(\Rightarrow\widehat{FKM}=90^0\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\Rightarrowđpcm\)
Ta có:
\(A=\frac{x-1}{x}.\left(x^2+x+1-\frac{x^3}{x-1}\right)\)
\(\frac{x-1}{x}\left(x^2+x+1-\frac{x^3}{x-1}\right)=\frac{x-1}{x}.\left(\frac{x^3-1}{x-1}-\frac{x^3}{x-1}\right)\)
\(=\frac{x-1}{x}\frac{\left(-1\right)}{x-1}=\frac{-1}{2}.\)
\(A=\frac{x-1}{x}\left(x^2+x+1-\frac{x^3}{x-1}\right)\)
\(=\frac{x-1}{x}\left(\frac{x^3-1}{x-1}-\frac{x^3}{x-1}\right)\)
\(=\frac{x-1}{x}.\frac{-1}{x-1}=\frac{-1}{x}\)
Xơi luôn nha:v
Có: \(\left(a^2+b^2+c^2\right)\left(5^2+1^2+1^2\right)\ge\left(5a+b+c\right)^2\)
Do đó \(A\ge\frac{\left(5a+b+c\right)^2}{27}\). Lại có: \(5a+b+c=4a+\left(a+b+c\right)\ge4.5+7=27\)
Từ đó \(A\ge27\)
True?
Từ \(a\ge5\)và \(a+b\ge6\)\(\Rightarrow b\ge1\)
Từ \(a+b\ge6\)và \(a+b+c\ge7\)\(\Rightarrow c\ge1\)
\(\Rightarrow A=a^2+b^2+c^2\ge5^2+1^2+1^2=27\)
Dấu = xảy ra khi \(a=5,b=c=1\)
Vậy \(minA=27\Leftrightarrow a=5,b=c=1\)
A B C D E N M H
CM: a) Do ABCD là hình vuông => BD là đường p/giác
=> \(\widehat{DBC}=\widehat{DBA}=\frac{1}{2}.\widehat{B}=\frac{1}{2}.90^0=45^0\)
Ta có: DC = CE (gt)l BC \(\perp\)DE (gt)
=> BC là đường trung trực
=> BD = BE => t/giác BDE cân tại B (2)
có BC là đường cao
=> BC cũng là đường p/giác
=> \(\widehat{DBC}=\widehat{CBE}=45^0\)
Ta lại có: \(\widehat{DBC}+\widehat{CBE}=\widehat{DBE}\)
=> \(\widehat{DBE}=45^0+45^0=90^0\)(2)
Từ (1) và (2) => t/giác DBE vuông cân tại B
b) Xét t/giác HBE có: HM = MD (gt)
HN = NE (gt)
=> MN là đường trung bình của t/giác
=> MN // BE và MN = 1/2DE
mà AB // DE (gt) và AB = 1/2DE (do DC + CE = 2AB)
=> AB // MN và AB = MN
=> AMNB là hình bình hành
c) Ta có: AD \(\perp\)DE \(\equiv\)D (gt)
MN // DE (cmt)
=> AD \(\perp\)MN hay MN \(\perp\)AD
Xét t/giác ADN có đường cao DH cắt đường cao NM tại M
=> M là trực tâm của t/giác ADN
d) HD: Áp dụng đường trung bình vào t/giác CEH => NC // DH => góc ANC = 900
(Đơn giản, nếu ko hiểu thì hỏi, t sẽ trl)
Xét tam giác FEB ta có
\(\hept{\begin{cases}EI=IF\left(gt\right)\\EM=MB\left(gt\right)\end{cases}}\)
=> IM là đường trung bình của tam giác FEB
IM=1/2FB
\(\hept{\begin{cases}IMsongsongFB\\màAnằmtrenFB\end{cases}}\)
=> IM // AB(1)
Xét tam giác FDB có
\(\hept{\begin{cases}DK=KF\left(gt\right)\\DN=NB\left(gt\right)\end{cases}}\)
=>KN là đường trung bình cảu tam giác FDB
=> KN = 1/2 DB
\(\hept{\begin{cases}IM=\frac{1}{2}FB\left(cmt\right)\\KN=\frac{1}{2FB}\left(cmt\right)\end{cases}}\)
=>IM=KN(2)
Từ (1) và (2) => IMKN là hình bình hành
Xét tam giác EFD có
\(\hept{\begin{cases}EI=IF\left(gt\right)\\DK=KF\left(gt\right)\end{cases}}\)
=> IK là đường trung bình của tam giác EFD
\(\hept{\begin{cases}=>IKsongsongED\\màĂtrenED\end{cases}}\)
\(\hept{\begin{cases}=>IKsongsongDA\\ADvuonggocAB\left(hìnhchunhatABCD\right)\end{cases}}\)
\(\hept{\begin{cases}=>IKvuonggocAB\\IMsongsongAB\left(cmt\right)\end{cases}}\)
=>IM vuông góc IK
=> IKMN là hình chữ nhật
=>IN=KM
D E F I K
Giải: a) Ta có: DE2 + DF2 = 32 + 42 = 9 + 16 = 25
EF2 = 52 = 25
=> DE2 + DF2 = EF2 => DEF là t/giác vuông (theo định lí Pi - ta - go đảo)
b) Xét t/giác DEF có DI là đường trung tuyến
=> DI = EI = IF = 1/2EF = 1/2.5 = 2,5 (cm)
c) Ta có: DI = IF => t/giác DIF là t/giác cân
có IK là đường cao
=> IK đồng thời là đường trung tuyến
=> DK = KF = 1/2 DF = 1/2.4 = 2 (cm)
Áp dụng định lí Pi - ta - go vào t/giác IDK vuông tại K, ta có:
DI2 = IK2 + DK2
=> IK2 = DI2 - DK2 = 2,52 - 22 = 2,25
=> IK = 1,5 (cm)