K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2019

Ta sẽ biểu diễn lại (d)

Có (d) 2x + y - a2 = 0

=> (d) y = -2x + a2 

1, Hoành độ giao điểm của (d) và (P) là nghiệm của pt

\(-2x+a^2=ax^2\)

\(\Leftrightarrow ax^2+2x-a^2=0\)(1)

Ta có: \(\Delta'=1+a^3>0\forall a>0\)

Nên pt (1) có 2 nghiệm phân biệt

=> (d) cắt (P) tại 2 điểm phân biệt A và B

Có \(S=-\frac{2}{a}< 0\forall a>0\)

   \(P=-a< 0\forall a>0\)

=> A và B nằm bên trái trục tung

2, Theo Vi-et \(x_A+x_B=-\frac{2}{a}\)

                    \(x_A.x_B=-a\)

Khi đó: \(T=\frac{4}{x_A+x_B}+\frac{1}{x_A.x_B}\)

                 \(=\frac{4}{\frac{-2}{a}}+\frac{1}{-a}\)

                \(=-2a-\frac{1}{a}\)

                 \(=-\left(2a+\frac{1}{a}\right)\)

Áp dụng bđt Cô-si cho 2 số dương ta được

\(T=-\left(2a+\frac{1}{a}\right)\le-2\sqrt{2a.\frac{1}{a}}=-2\sqrt{2}\)

Dấu "=" xảy ra \(\Leftrightarrow2a^2=1\)

                       \(\Leftrightarrow a^2=\frac{1}{2}\)

                       \(\Leftrightarrow a=\frac{1}{\sqrt{2}}\left(a>0\right)\)

Vậy ...........

7 tháng 1 2019

Hoành độ giao điểm của (d) và (P) là nghiệm của pt

\(kx+\frac{1}{2}=\frac{1}{2}x^2\)

\(\Leftrightarrow x^2-2kx-1=0\left(1\right)\)

Để (d) cắt (P) tại 2 điểm phân biệt thì pt (1) phải có 2 nghiệm phân biệt 

Khi đó: \(\Delta'>0\)

\(\Leftrightarrow k^2+1>0\)(Luôn đúng)

Theo Vi-ét ta có: xA + xB = 2k

                          xA . xB = -1

Vì \(A;B\in\left(P\right)\)

\(\Rightarrow\hept{\begin{cases}y_A=\frac{1}{2}x_A^2\\y_B=\frac{1}{2}x_B^2\end{cases}}\)

Gọi I(xI ; yI) là trung điểm AB

Khi đó: \(x_I=\frac{x_A+x_B}{2}=\frac{2k}{2}=k\)

         \(y_I=\frac{y_A+y_B}{2}=\frac{x^2_A+x_B^2}{4}=\frac{\left(x_A+x_B\right)^2-2x_Ax_B}{4}=\frac{4k^2+2}{4}=k^2+\frac{1}{2}\)

Do đó: \(y_I=x_I^2+\frac{1}{2}\)

Nên I thuộc \(\left(P\right)y=x^2+\frac{1}{2}\)

Vậy ...............

P/S: nếu bạn thắc mắc về \(\left(P\right)=x^2+\frac{1}{2}\)thì mình sẽ giải thích

Ở cấp 2 thì ta chỉ được gặp dạng (P) y = ax2 có đỉnh trùng với gốc tọa độ

Nhưng đây chỉ là dạng đặc biệt của nó thôi . Còn dạng chuẩn là (P) y = ax2 + bx + c . (P) này có đỉnh không trùng với gốc tọa độ

7 tháng 1 2019

Mình thiếu F là giao điểm của MC và AB

7 tháng 1 2019

Câu hỏi của Namek kian - Toán lớp 9 - Học toán với OnlineMath

em tham khảo ở link này nhé!

7 tháng 1 2019

Áp dụng BĐT Svac

\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\ge\frac{a+b+c}{2a+2b+2c}=\frac{1}{2}\)

Vậy đề sai nhé

7 tháng 1 2019

\(\hept{\begin{cases}x^2y+xy^2=30\\x^3+y^3=35\end{cases}}\) <=>  \(\hept{\begin{cases}xy\left(x+y\right)=30\\\left(x+y\right)^3-3xy\left(x+y\right)=35\end{cases}}\) <=>  \(\hept{\begin{cases}xy\left(x+y\right)=30\\\left(x+y\right)^3=125\end{cases}}\)

<=>  \(\hept{\begin{cases}xy\left(x+y\right)=30\\x+y=5\end{cases}}\)  <=>  \(\hept{\begin{cases}xy=6\\x+y=5\end{cases}}\) <=>  \(\orbr{\begin{cases}x=2,y=3\\x=3;y=2\end{cases}}\)

7 tháng 1 2019

A:Cr2O3

B:NA2CrO4

C:NA2Cr2O7

7 tháng 1 2019

\(\left(x+\sqrt{x^2+2019}\right)\left(\sqrt{x^2+2019}-x\right)=x^2+2019-x^2=2019\)

\(\Rightarrow\sqrt{x^2+2019}-x=y+\sqrt{y^2+2019}\left(2\right)\)

Tương tự \(\sqrt{y^2+2019}-y=x+\sqrt{x^2+2019}\left(1\right)\)

Lấy (2) - (1) được: -2x = 2y

                       <=> -x = y

                       <=> x + y = 0