Cho đường tròn (O:R) đường kính AB cố định . Trên tia đối của AB lấy điểm C sao cho AC=R . Qua C kể đường thẳng d vuông góc với CA . Lấy điểm M bất kì trên đường tròn (O) không trùng với A,B. Tia BM cắt đường thẳng d tại P. Tia CM cắt đường tròn (O) tại điểm thứ hai là N tia PA cắt đường tròn (O) tại điểm thứ hai là Q
a/ Cm A,C,P,M cùng thuộc 1 đường tròn
b/Tính BM.BP theo R
c/cm PC//NQ
O o A B C d M P N Q
tg là tam giác nha !
a )
Ta có : gócABM = 90o ( góc nội tiếp chắn nửa đường tròn đường kính AB )
Ta có : gócABM + gócAPM = 180o ( 2 góc kề bù )
=> gócAPM = 180o - gócABM = 180o - 90o = 90o
Xét tứ giác ACPM , có :
gócACP = 90o ( gt )
gócAPM = 90o ( cmt )
gócACP + gócAPM = 90o + 90o =180o
Do đó : tứ giác ACPM nội tiếp được đường tròn ( có tổng số đo 2 góc đối diện bằng 180o )
=> A , C , P , M cùng thuộc 1 đường tròn .