Phân tích đa thức thành nhân tử:
a)x^2+2xy+y^2-x-y-12
b)3x^2+22xy+11x+37y+7y^2+10
c)x^4-8x+63
Sắp đến ngày 20/11 bạn có món quà muốn tặng thầy cô giáo chưa nếu có thì cho tôi bt
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^6-2x^3y-x^4+y^2+7=0.\)
\(\Leftrightarrow\left(x^6-2x^3y+y^2\right)-x^4=-7\)
\(\Leftrightarrow\left(x^3-y\right)^2-x^4=-7\)
\(\Leftrightarrow\left(x^3-y-x^2\right)\left(x^3-y+x^2\right)=-7\)
do \(x\in Z\) nên ta có bảng: (với bảng này áp dụng tổng - hiệu cùa 2 số là được)
Chúc bạn học tốt nhé ^3^
\(x^3+x^2-2x-8=0\)
\(\Leftrightarrow\left(x^3+3x^2+4x\right)-\left(2x^2+6x+8\right)=0\)
\(\Leftrightarrow x\left(x^2+3x+4\right)-2\left(x^2+3x+4\right)=0\)
\(\Leftrightarrow\left(x^2+3x+4\right)\left(x-2\right)=0\)(1)
Ta thấy \(x^2+3x+4\)
\(=x^2+2.x.\frac{3}{2}+\frac{9}{4}-\frac{9}{4}+4\)
\(=\left(x+\frac{3}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}>0;\forall x\)
\(\Rightarrow\left(1\right)\)xảy ra \(\Leftrightarrow x-2=0\)
\(\Leftrightarrow x=2\)
Vậy x=2
\(\Leftrightarrow\left(x^3-8\right)+\left(x^2-2x\right)=0\Leftrightarrow\left(x-2\right)\left(x^2+2x+4\right)+x\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+3x+4\right)=0\Leftrightarrow\orbr{\begin{cases}x-2=0\\\left(x+\frac{3}{2}\right)^2+\frac{7}{4}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x\in\varnothing\end{cases}\Rightarrow x=2.}\)
Vậy ........
Để \(x^4+ax+b\)chia hết cho \(x^2-1\)
\(\Leftrightarrow ax+b+1=0\)
\(\Leftrightarrow\hept{\begin{cases}a=0\\b+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=0\\b=-1\end{cases}}}\)
Vay ...
Đa thức \(x^2-1\)có nghiệm\(\Leftrightarrow x^2-1=0\Leftrightarrow x=\pm1\)
TH1: x = 1\(\Rightarrow1+a+b=0\Leftrightarrow a+b=-1\)
TH2: x = - 1\(\Rightarrow1-a+b=0\Leftrightarrow a-b=1\)
Có hệ\(\hept{\begin{cases}a+b=-1\\a-b=1\end{cases}}\Leftrightarrow\hept{\begin{cases}a=0\\b=-1\end{cases}}\)
Vậy a = 0; b = -1 thì \(x^4+ax+b\)chia hết cho đa thức x2 -1
1/ Xét \(\diamond ACDO\), có :
\(\widehat{BAC}=\widehat{ACD}=\widehat{CDO}=90^0\)
\(\Rightarrow\diamond ACDO\) là hình chữ nhật
mà \(AC=CD\)
\(\Rightarrow\diamond ACDO\) là hình vuông.
2/ Ta có :
\(\bigtriangleup ABC\) vuông tại A \(\Rightarrow\widehat{ABC}+\widehat{ACB}=90^0\)
\(\bigtriangleup ABH\) vuông tại H \(\Rightarrow\widehat{BAH}+\widehat{ABC}=90^0\)
Do đó \(\widehat{BAH}=\widehat{ACB}\)
Xét \(\bigtriangleup ABC\) và \(\bigtriangleup AOO_2\), có :
\(\widehat{BAC}=\widehat{O_2OA}=90^0\) (\(\diamond ACDO\) là hình vuông)
\(AC=AO\) (\(\diamond ACDO\) là hình vuông)
\(\widehat{OAO_2}=\widehat{ACB}\) (vì \(\widehat{BAH}=\widehat{ACB}\))
\(\Rightarrow\bigtriangleup ABC=\bigtriangleup AOO_2\text{ }\left(g.c.g\right)\).
a, x^2+2xy+y^2-x-y-12
=(x+y)^2-(x+y+12)
=(x+y)(x+y-1+12 )
=(x+y)(x+y+11)
c, x^4-8x+63
=x(x^3-8)+63
=x[(x-2)(x^2+2x+4)]+63
=x(x-2)(x^2+2x+67)
P/S: câu b dài quá, nhác làm. nhưng k cho mk với :)))
Bạn lm sai r nha bạn .nhg cx cảm ơn đã TL câu hỏi của mk