Cho 6 số nguyên dương a < b < c < d < m <n. Chứng minh: \(\frac{a+d}{a+b+c+m+n}< \frac{1}{3}\)
:>>
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H D E
A)XÉT \(\Delta ABH\)VÀ \(\Delta ADH\)CÓ
\(BH=HD\left(gt\right);\widehat{AHB}=\widehat{AHD}=90^o;\)AH LÀ CẠNH CHUNG
=> \(\Delta ABH\)=\(\Delta ADH\)(C-G-C)
=> AB = AD ( hai cạnh tương ứng )
=> \(\Delta ABD\)là tam giác cân
nhắc lại kiến thức: mà trong tam giác cân có một góc bằng 60 độ suy ra tam giác đó là tam giác đều
MÀ \(\widehat{ABH}=60^o\)hay \(\widehat{ABD}=60^o\)
=> \(\Delta ABD\)là tam giác đều
B) XÉT \(\Delta ABH\)CÓ
\(\widehat{BAH}+\widehat{ABH}+\widehat{AHB}=180^o\Leftrightarrow\widehat{BAH}+60^o+90^o=180^o\Leftrightarrow\widehat{BAH}=180^o-\left(60^o+90^o\right)=30^o\)
vì \(\Delta ABH\)=\(\Delta ADH\)(cmt)
\(\Rightarrow\widehat{BAH}=\widehat{DAH}=30^o\)
có \(\widehat{BAH}+\widehat{DAH}+\widehat{DAC}=90^o\Leftrightarrow30^o+30^o+\widehat{DAC}=90^o\Leftrightarrow\widehat{DAC}=90^o-\left(30^o+30^o\right)=30^o\)
ta có \(\widehat{AHD}+\widehat{EDH}=90^o+90^o=180^o\)
hai góc này ở vị trí trong cùng phía bù nhau
=> AH // DE
=>\(\widehat{HAD}=\widehat{ADE}=30^o\)
ta có \(\widehat{DAC}=\widehat{ADE}\)hay \(\widehat{EAD}=\widehat{ADE}\)
=> \(\Delta AED\)là tam giác cân
A B C H D E F
c) xét \(\Delta ABC\)CÓ
\(\widehat{A}+\widehat{B}+\widehat{C}=180^o\Leftrightarrow90^o+60^o+\widehat{C}=180^o\Leftrightarrow\widehat{C}=180^o-\left(90^o+60^o\right)=30^o\)
xét \(\Delta AHC\)VÀ \(\Delta CFA\)CÓ
AC LÀ CẠNH CHUNG
\(\widehat{H}=\widehat{F}=90^o\)
\(\widehat{ACH}=\widehat{CAF}=30^o\)
=> \(\Delta AHC\)=\(\Delta CFA\)(ch-gn)
\(\Rightarrow AH=CF\left(1\right)\)
vì \(\Delta AHC\)=\(\Delta CFA\)(cmt)
\(\Rightarrow HC=FA\)
xét \(\Delta HAF\)VÀ \(\Delta FCH\)CÓ
\(AF=CH\left(cmt\right);\widehat{HAF}=\widehat{FCH}=30^o;HA=FC\left(cmt\right)\)
=>\(\Delta HAF\)=\(\Delta FCH\)(c-g-c)
\(\Rightarrow\widehat{AFH}=\widehat{CHF}\)HAY \(\widehat{AFH}=\widehat{DHF}\)
XÉT \(\Delta HAF\)CÓ
\(\widehat{HAF}+\widehat{AHD}+\widehat{DHF}+\widehat{AFH}=180^o\)
vì\(\widehat{AFH}=\widehat{DHF}\)
\(\Leftrightarrow30^o+90^o+2\widehat{AFH}=180^o\)
\(\Leftrightarrow2\widehat{AFH}=60^o\)
\(\Leftrightarrow\widehat{AFH}=30^o\)
xét \(\Delta HAF\)có
\(\widehat{AFH}=\widehat{HAF}=30^o\)
=>\(\Delta HAF\)cân tại H
=> \(AH=HF\left(2\right)\)
TỪ (1) VÀ (2)
\(\Rightarrow AH=HF=FC\left(đpcm\right)\)
ta có \(\hept{\begin{cases}\left(\frac{1}{2}x-5\right)^{20}\ge0\forall x\\\left(y^2-\frac{1}{4}\right)^{10}\ge0\forall y\end{cases}\Rightarrow\hept{\begin{cases}\frac{1}{2}x-5=0\\y^2-\frac{1}{4}=0\end{cases}\Leftrightarrow}\hept{\begin{cases}\frac{1}{2}x=5\\y^2=\frac{1}{4}\end{cases}\Leftrightarrow\hept{\begin{cases}x=10\\y=\pm\frac{1}{2}\end{cases}}}}\)
Bài làm:
Ta có: \(\hept{\begin{cases}\left(\frac{1}{2}x-5\right)^{20}\ge0\left(\forall x\right)\\\left(y^2-\frac{1}{4}\right)^{10}\ge0\left(\forall y\right)\end{cases}\Rightarrow\left(\frac{1}{2}x-5\right)^{20}+\left(y^2-\frac{1}{4}\right)^{10}\ge0\left(\forall x,y\right)}\)
Mà theo đề bài: \(\left(\frac{1}{2}x-5\right)^{20}+\left(y^2-\frac{1}{4}\right)^{10}\le0\)
\(\Rightarrow\hept{\begin{cases}\left(\frac{1}{2}x-5\right)^{20}=0\\\left(y^2-\frac{1}{4}\right)^{10}=0\end{cases}}\Rightarrow\hept{\begin{cases}x=10\\y=\pm\frac{1}{2}\end{cases}}\)
Bài 2 :
\(a,B=-\sqrt{\left(-4\right)^2+\left(-3\right)^2}\)
\(B=-\sqrt{16+9}\)
\(B=-\sqrt{25}\)
\(B=-5\)
b, Bạn viết rõ ra nhé
Học tốt
\(\left[\left(-\frac{1}{2}\right)^2\right]^5va\left(-\frac{1}{2}\right)^{10}\)
\(\left(-\frac{1}{2}\right)^{2×5}va\left(-\frac{1}{2}\right)^{10}\)
\(\left(-\frac{1}{2}\right)^{10}=\left(-\frac{1}{2}\right)^{10}\)
\(b=-\sqrt{\left(-4\right)^2+\left(-3\right)^2}\)
\(b=-\sqrt{16+9}\)
\(b=-\sqrt{25}\)
\(b=-5\)
=\(\left(-\frac{1}{2}+\frac{4}{3}\right).\frac{16}{5}-\frac{6}{5}\)
\(=\frac{5}{6}.\frac{16}{5}-\frac{6}{5}\)
\(=\frac{8}{3}-\frac{6}{5}\)
\(=\frac{22}{15}\)
\(=\frac{20}{3}-\frac{16}{3}.\left(\frac{3}{4}\right)^2\)
\(=\frac{20}{3}-\frac{16}{3}.\frac{9}{16}\)
\(=\frac{20}{3}-3\)
\(=\frac{11}{3}\)
\(\sqrt{0,04}-\sqrt{0,36}+\sqrt{\frac{121}{100}}+0,5\)
\(=0,2-0,6+1,1+0,5\)
\(=1,2\)
\(\sqrt{0,04}-\sqrt{0,36}+\sqrt{\frac{121}{100}}+0,5\)
\(=0,2-0,6+\frac{11}{10}+0,5\)
\(=\frac{6}{5}\)
\(\frac{25}{12}.\frac{23}{7}-\frac{25}{12}.\frac{12}{7}\)
\(=\frac{25}{12}.\left(\frac{23}{7}-\frac{12}{7}\right)\)\(\)
\(=\frac{25}{12}.\frac{11}{7}\)
\(=\frac{275}{84}\)
\(-\frac{6}{7}.\frac{7}{10}.\frac{11}{-6}.\left(-20\right)\)
\(=-\frac{3}{5}.\frac{-11}{6}.\left(-20\right)\)
\(=\frac{11}{10}.\left(-20\right)\)
\(=-22\)
Tính
\(\frac{12}{25}.\frac{23}{7}-\frac{12}{25}.\frac{12}{7}=\frac{12}{25}\left(\frac{23}{7}-\frac{12}{7}\right)\)
\(=\frac{12}{25}.\frac{11}{7}=\frac{132}{175}\)
\(-\frac{6}{11}.\frac{7}{10}.\frac{11}{-6}.\left(-20\right)\)
\(=\frac{-6.7.11.\left(-20\right)}{11.10.\left(-6\right)}=7.\left(-20\right)=-140\)
a) Xét \(\Delta ABC\)có
\(AB=AC\left(gt\right)\)
\(\Rightarrow\Delta ABC\)cân tại A
\(\Rightarrow\widehat{B}=\widehat{C}\)
b) Vì M là trung điểm của BC
=> AM là đường trung tuyến của \(\Delta ABC\)
Trong tam giác cân đường trung tuyến cũng là đường cao
\(\Rightarrow AM\perp BC\)
A B M C 1 2
a) Xét \(\Delta ABC\)có : AB = BC ( gt )
\(\Rightarrow\Delta ABC\)cân tại A
\(\Rightarrow\widehat{B}=\widehat{C}\)
b) Xét \(\Delta ABM\)và \(\Delta ACM\)có :
\(AB=AC\left(gt\right)\)
\(BM=MC\)( M là trung điểm của BC )
AM chung
\(\Rightarrow\Delta ABM=\Delta ACM\left(c.c.c\right)\)
\(\Rightarrow\widehat{M_1}=\widehat{M_2}\)( 2 góc tương ứng )
mà \(\widehat{M_1}+\widehat{M_2}=180^o\)( kề bù )
\(\Rightarrow\widehat{M_1}=90^o\)
\(\Rightarrow AM\perp BC\)
a) Ta có \(\frac{x}{3}=\frac{y}{5}=\frac{x+y}{3+5}=-\frac{32}{8}=-4\)(dãy tỉ số bằng nhau)
=> x = -12 ; b = -20
b) Ta có : \(\frac{x}{y}=\frac{9}{11}\Rightarrow\frac{x}{9}=\frac{y}{11}=\frac{x+y}{9+11}=\frac{60}{20}=3\)(dãy tỉ số bằng nhau)
=> x = 27 ; y = 33
a. Áp dụng t/c của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{3}=\frac{y}{5}=\frac{x+y}{3+5}=\frac{-32}{8}=-4\)
Suy ra :
+) \(\frac{x}{3}=-4\Leftrightarrow x=-12\)
+) \(\frac{y}{5}=-4\Leftrightarrow y=-20\)
b. \(\frac{x}{y}=\frac{9}{11}\Leftrightarrow\frac{x}{9}=\frac{y}{11}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{9}=\frac{y}{11}=\frac{x+y}{9+11}=\frac{60}{20}=3\)
Suy ra :
+) \(\frac{x}{9}=3\Leftrightarrow x=27\)
+) \(\frac{y}{11}=3\Leftrightarrow y=33\)
\(M=2\left(x^3-y^3\right)-3\left(x^2+2xy+y^2\right)\)
\(=2\left[\left(x-y\right)^3+3xy\left(x-y\right)\right]-3\left(x^2-2xy+y^2+4xy\right)\)
\(=2.\left[\left(x-y\right)^3+3xy\left(x-y\right)\right]-3\left[\left(x-y\right)^2+4xy\right]\)
Thay \(x-y=2\)vào biểu thức ta được:
\(M=2.\left(2^3+3xy.2\right)-3\left(2^2+4xy\right)=2.\left(8+6xy\right)-3.\left(4+4xy\right)\)
\(=16+12xy-12-12xy=4\)
a < b < c < d < m
=> a + d < c + m + n
=> 3 ( a + d ) < a + b + c + d + m + n
\(\Rightarrow\frac{3\left(a+d\right)}{a+b+c+d+m+n}< 1\)
\(\Rightarrow\frac{a+d}{a+b+c+d+m+n}< \frac{1}{3}\) ( Đpcm )