tìm bậc của đa thức \(2x^{2}y^{2}+x^{4}-2y^{5}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2) Gọi a,b,c là độ lớn của 3 góc A,B,C
Theo đề bài ta có:
\(\frac{a}{1}=\frac{b}{2}=\frac{c}{3}\)
Áp dụng t/c dãy tỉ số bằng nhau:
\(\frac{a}{1}=\frac{b}{2}=\frac{c}{3}=\frac{a+b+c}{1+2+3}=\frac{180}{6}=30\)
\(\Rightarrow\hept{\begin{cases}a=30\\b=60\\c=90\end{cases}}\)
Vậy 3 góc A,B,C lần lượt là 30,60 và 90 độ
1) Áp dụng t/c dãy tỉ số bằng nhau:
\(a=\frac{b}{3}=\frac{c}{4}=\frac{3a-2b+2c}{3-6+8}=\frac{55}{5}=11\)
\(\Rightarrow\hept{\begin{cases}a=11\\b=33\\c=44\end{cases}}\)
a)có a1+a2+a3<a3+a3+a34
suy ra a1+a2+a3<a3.3
a4+a5+a6<a6+a6+a6
suy ra a4+a5+a6<a6.3
a7+a8+a9<a9+a9+a9
suy ra a7+a8+a9<a9.3
suy ra a1+a2+a3+...+a9/a3+a6+a9<a3.3+a6.3+a9.3 (vì a3,a6,a9>0)
suy ra a1+a2+a3+...+a9<3.(a3+a6+a9)=3
suy ra a1+a2+a3+...+a99<3
suy ra: điều phải chứng minh
ta có DE là đường trung bình của tam giác HAB nên DE // AB => DE vuông góc với AC mà AH vuông góc với CD và AH cắt DE tại E nên E là trực tâm của tam giác ADC => CE vuông góc với AD
[(-19,95) + (-45,75)] + [(4,95) + (+5,75)]
=> [-65,7] + [10,7]
=> -55
nếu mn thấy đúng nhớ cho mk nha
= -15,5 .( 20,8 - 9,2) + 3,5 . (9,2+20,8)
=-15,5 . 11,6 + 3,5 .30
=-179,8+105
=-74,8
a, \(\frac{5^3+3.5^2}{-8}=\frac{125+75}{-8}=\frac{200}{-8}=-40\)
b, \(0,5\sqrt{100}-\sqrt{\frac{1}{4}}+6,5:\left(2\frac{1}{4}-1\frac{1}{6}\right)=5-\frac{1}{2}+6,5:\left(\frac{13}{12}\right)\)
\(=5-\frac{1}{2}+6=\frac{21}{2}\)
\(0,5\sqrt{100}-\sqrt{\frac{1}{4}}+6,5:\left(2\frac{1}{4}-1\frac{1}{6}\right)\)
\(=0,5.10-\frac{1}{2}+6,5:\left(\frac{9}{4}-\frac{7}{6}\right)\)
\(=5-\frac{1}{2}+6,5:\frac{13}{12}\)
\(=5-\frac{1}{2}+6,5.\frac{12}{13}\)
\(=5-\frac{1}{2}+6\)
\(=\frac{10}{2}-\frac{1}{2}+\frac{12}{2}=\frac{21}{2}\)
b)\(\frac{5^3+3.5^2}{-8}=\frac{125+75}{-8}=\frac{200}{-8}=-40\)
Bài làm:
a) Ta có: \(A=\left|x-\frac{3}{4}\right|\ge0\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left|x-\frac{3}{4}\right|=0\Rightarrow x=\frac{3}{4}\)
Vậy Min(A) = 0 khi x=3/4
b) Ta có: \(B=-\left|x+2020\right|\le0\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left|x+2020\right|=0\Rightarrow x=-2020\)
Vậy Max(B) = 0 khi x = -2020
A = | x - 3/4 |
\(\left|x-\frac{3}{4}\right|\ge0\forall x\Rightarrow A\ge0\)
Dấu " = " xảy ra <=> x - 3/4 = 0 => x = 3/4
Vậy AMin = 0 , đạt được khi x = 3/4
B = - | x + 2020 |
\(\left|x+2020\right|\ge0\forall x\Rightarrow-\left|x+2020\right|\le0\forall x\)
\(\Rightarrow B\le0\)
Dấu " = " xảy ra <=> x + 2020 = 0 => x = -2020
Vậy BMax = 0, đạt được khi x = -2020
Tham khảo :)
Trong \(31\) số hữu tỉ đã cho chắc chắn có ít nhất một số âm , vì nếu tất cả \(31\) số hữu tỉ đó dương thì tổng của\(3\) số trong chúng không thể là một số âm .
Bài giải
Trong 31 số trên phải có ít nhất 1 số âm không thì tổng 3 số bất kì đều là số dương trái với đề bài. Bỏ riêng số âm vùa nói trên ra. ta còn lại 30 số chia làm 10 cặp mỗi cặp 3 số. Tổng 3 số bất kì đều âm nên cả 10 cặp tức 30 số còn lại đều âm. Cộng với số âm bỏ riêng ra sẽ có tổng 31 số đều là âm.
Đa thức \(2x^2y^2+x^4-2y^5\) có 3 hạng tử :
\(2x^2y^2\) có bậc là 4
\(x^4\) có bậc là 4
\(2y^5\) có bậc là 5
\(\Rightarrow\) Bậc của đa thức là bậc 5.
Ta có bậc đa thức \(2x^2y^2+x^4-2y^5\) = bậc của hạng tử có bậc cao nhất trong đa thức \(2x^2y^2+x^4-2y^5\)
Lại có đa thức \(2x^2y^2+x^4-2y^5\)có 3 hạng tử
\(2x^2y^2\)có bậc là 4
\(x^4\)có bậc là 4
\(-2y^5\)có bậc là 5
\(\Rightarrow\)Đa thức \(2x^2y^2+x^4-2y^5\)có bậc là 5