Tìm giá trị Nhỏ Nhất của biểu thức:
\(1.A=-|10,2-3x|-14\)
\(2.B=4-|5x-2|-|3y+12|\)
\(3.C=-3,7-|1,7-x|\)
\(4.D=3-\frac{5}{2}|\frac{2}{5}-x|\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu c nhaaaaaaaa
Có: AF là phân giác DAE
=> \(DAF=EAF=\frac{DAE}{2}\)
Mà: DAE = 60 độ
=> \(EAF=30\)
=> Mà: AFE = 90 độ
=> \(AEF=180-90-30=60\)
=> \(AEB=120\) (Do: AEB và AEF là 2 góc kề bù)
Vậy góc BEA = 120 độ.
\(F\left(x\right)=ax^2+b\)
với \(F\left(0\right)=a0^2+b=-3\Leftrightarrow b=-3\left(2\right)\)
với\(F\left(1\right)=a1^2+b=-1\Leftrightarrow a+b=-1\left(1\right)\)
từ (1) và (2) ta có phương trình sau
\(\hept{\begin{cases}b=-3\\a+b=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}b=-3\\a+\left(-3\right)=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}b=-3\\a=2\end{cases}}\)
vậy b = -3 và a = 2
A = |x - 3| + |x + 7| + |x + 1|
A = (|3 - x| + |x + 7|) + |x + 1|
Ta có: |3 - x| + |x + 7| \(\ge\)|3 - x + x + 7| = 10
Dấu "=" xảy ra <=> (3 - x)(x + 7) \(\ge\)0
=> -7 \(\le\)x \(\le\)3 (1)
Ta lại có: |x + 1| \(\ge\)0
Dấu "=" xảy ra<=> x + 1 = 0 <=> x = -1 (2)
Từ (1) và (2) => x = -1
Vậy MinA = 10 + 0 = 10 khi x = -1
Vì Om là tia phân giác góc xOy nên :
góc xOm = góc mOy
mà góc zOt = góc xOm ( vì đối đỉnh )
=> góc zOt = góc mOy
Vậy góc zOt = góc mOy .
Học tốt
pt <=> \(\left(12k^2+10k+2\right)\left(5k+3\right)=192\)
<=> \(60k^3+86k^2+40k-186=0\)
<=> \(60k^3-60k^2+146k^2-146k+186k-186=0\)
<=> \(\left(k-1\right)\left(60k^2+146k+186\right)=0\)
<=> \(\orbr{\begin{cases}k=1\\60k^2+146k+186=0\end{cases}}\)
TA XÉT TH2:
=> \(900k^2+2190k+2790=0\)
<=> \(\left(30k+36,5\right)^2+1457,75=0\)
DO: \(\left(30k+36,5\right)^2\ge0\forall k\)
=> \(VT\ge1457,75>0\)
=> pt vô nghiệm
VẬY PT CÓ NGHIỆM DUY NHẤT \(x=1\)
gọi các cạnh của tam giác vuông là x,y,z trong đó z là cạnh huyền
theo đề ra ta có xy=2(x+y+z) (1) và x2+y2=z2
từ x2+y2=z2 => z2=(x+y)2-2xy thay vào (1) ta có z2=(x+y)2-4(x+y+z)
z2+4z=(x+y)2-4(x+y)
z2+4z+4=(x+y)2-4(x+y)+4
(z+2)2=(x+y-2)2
=> z+2=x+y-2
=> z=x+y-4 thay vào (1) ta được xy=2(x+y+x+y-4)
xy=4x+4y-8
xy=-4x-4y=-8
x(y-4)-4(y-4)-16=-8
(x-4)(y-4)=8
(x-4)(y-4)=1.8=2.4
từ đó tìm được (x;y;z)=(5;12;13);(12;5;13);(6;8;10);(8;6;10)
THAM khảo
Gọi a, b, c là số đo 3 cạnh của tam giác vuông cần tìm. Giả sử \(1\le a\le b\le c\)
Ta có hệ phương trình \(\hept{\begin{cases}a^2+b^2=c^2\left(1\right)\\ab=2\left(a+b+c\right)\left(2\right)\end{cases}}\)
Từ (1) \(c^2=\left(a+b\right)^2-2ab\)
\(\Leftrightarrow c^2=\left(a+b\right)^2-4\left(a+b+c\right)\)( theo (2))
\(\Leftrightarrow\left(a+b\right)^2-4\left(a+b\right)=c^2+4c\)
\(\left(a+b-2\right)^2=\left(c+2\right)^2\)
\(c=a+b-4\)
Thay vào (2) ta được
\(ab=2\left(a+b+a+b-4\right)\)
\(ab-4a-4b+8=0\)
\(\Leftrightarrow b\left(a-4\right)-4\left(a-4\right)=8\)
\(\Leftrightarrow\left(a-4\right)\left(b-4\right)=8\)
Phân tích 8 = 1.8 = 2.4 nên ta có:
\(\hept{\begin{cases}a=5\\b=12\end{cases}}\)hoặc \(\hept{\begin{cases}a=6\\b=8\end{cases}}\)
Từ đó ta có 2 tam giác vuông có các cạnh (5;12;13):(6;8;10)
CRE: inter
@dcv_new: thử tách theo cách x^4+x^2+6x-6-2 thử đi:)) chắc cũng ra á:)
\(x^4+x^2+6x-8=0\)
\(\Leftrightarrow\left(x^3+x^2+2x+8\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x^2-x+4\right)\left(x+2\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x^2-x+4\ne0\right)\Leftrightarrow\orbr{\begin{cases}x=-2\\x=1\end{cases}}\)( chắc dân chuyên như cậu hiểu chỗ này á )
câu 1
a)\(\left|x-2\right|+4=6\Leftrightarrow\left|x-2\right|=2\Leftrightarrow\orbr{\begin{cases}x-2=2\\x-2=-2\end{cases}\Leftrightarrow\orbr{\begin{cases}x=4\\x=0\end{cases}}}\)
b) \(B=x^2y^3-3xy+4\)
khi x = -1 và y = 2
\(\Leftrightarrow B=\left(-1\right)^2.2^3-3.\left(-1\right).\left(2\right)+4\)
\(\Leftrightarrow B=1.8-\left(-6\right)+4\)
\(\Leftrightarrow B=14+4=18\)
c) nhân phần biến với biến hệ với hệ thì ra thôi
Câu 1 a) |x - 2| + 4 = 6
=> |x - 2| = 2
=> \(\orbr{\begin{cases}x-2=2\\x-2=-2\end{cases}}\Rightarrow\orbr{\begin{cases}x=4\\x=0\end{cases}}\)
Vậy x \(\in\left\{4;0\right\}\)
b) Thay x = -1 ; y = 2 vào B ta có :
B = (-1)2.23 - 3.(-1).2 + 4
= 8 + 6 + 4 = 18
c) \(A=\frac{1}{3}x^2y^3.\left(-6x^3y^2\right)^2=\frac{1}{3}x^2y^3.36x^6y^4=12x^8y^7\)
Hệ số : 12
Bậc của đơn thức : 15
Phần biến x8y7
2) a) f(x) - g(x) = (2x3 - x2 + 5) - (-2x3 + x2 + 2x - 1)
= 2x3 - x2 + 5 + 2x3 - x2 - 2x + 1)
= 4x3 - 2x2 + 2x + 6
Bậc của f(x) - g(x) là 3
b) f(x) + g(x) = (2x3 - x2 + 5) + (-2x3 + x2 + 2x - 1)
= 2x3 - x2 + 5 - 2x3 + x2 + 2x - 1
= 2x + 4
Lại có f(x) + g(x) = 0
=> 2x + 4 = 0
=> 2x = -4
=> x = -2
Vậy x = -2
các bạn làm hết giùm mk nhá.Nhất là câu 1 và 4
ai nhanh mk k cho ha