K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2019

a,b,c là độ dài 3 cạnh của 1 tam giác nên:

\(\hept{\begin{cases}a< b+c\\b< c+a\\c< a+b\end{cases}}\Leftrightarrow\hept{\begin{cases}a^2< ab+ac\\b^2< bc+ab\\c^2< ac+bc\end{cases}}\)

Cộng từng vế của các BĐT trên:

\(a^2+b^2+c^2< 2\left(ab+bc+ac\right)\)

\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)\)\(< 4\left(ab+bc+ac\right)\)

\(\Rightarrow\left(a+b+c\right)^2\)\(< 4\left(ab+bc+ac\right)\)(đpcm)

24 tháng 11 2019

\(\Leftrightarrow3\left(ab+bc+ca\right)\le3\left(a+b+c\right)\) (nhân 3 vào hai vế)

\(\Leftrightarrow3\left(ab+bc+ca\right)\le\left(a+b+c\right)^2\) (sử dụng giả thiết 3 = a + b + c để đồng bậc hóa hai vế)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)(đúng)

24 tháng 11 2019

bạn không ghi yêu cầu nên mình làm như này

1) \(\frac{1}{x-3}\) và \(\frac{5}{x^2-3x}\)

Ta có: \(1.\left(x^2-3x\right)=x^2-3x\)

           \(\left(x-3\right).5=5x-15\)

\(\Rightarrow x^2-3x\ne5x-15\)

\(\Rightarrow1.\left(x^2-3x\right)\ne\left(x-3\right).5\)

Vậy: \(\frac{1}{x-3}\ne\frac{5}{x^2-3x}\)

2) \(\frac{x}{x^2+x}\) và \(\frac{2}{x-1}\) và \(\frac{x+2}{x^2-1}\)

Ta có: \(x.\left(x-1\right)=x^2-x\)

          \(2.\left(x^2+x\right)=2x^2+2x\)

\(\Rightarrow x^2-x\ne2x^2+2x\)

\(\Rightarrow x.\left(x-1\right)\ne2.\left(x^2+x\right)\)

\(\Rightarrow\frac{1-3x}{2x}\ne\frac{2}{x-1}\) (1)

Ta lại có: \(2.\left(x^2-1\right)=2x^2-2\)

                \(\left(x-1\right)\left(x+2\right)=x^2+2x-x-2\)

                                                   \(=x^2-x-2\)  

\(\Rightarrow2x^2-2\ne x^2-x-2\)

\(\Rightarrow2.\left(x^2-1\right)\ne\left(x-1\right)\left(x+2\right)\)

\(\Rightarrow\frac{2}{x-1}\ne\frac{x+2}{x^2-1}\) (2)

Từ (1) và (2) => \(\frac{x}{x^2+x}\ne\frac{2}{x-1}\ne\frac{x+2}{x^2-1}\)

3) \(\frac{1-3x}{2x}\) và \(\frac{3x-2}{2x-1}\) và \(\frac{3x-2}{4x^2-2x}\)

Ta có:\(\left(1-3x\right)\left(2x-1\right)=2x-1-6x^2+3x\)

                                                   \(=5x-1-6x^2\)

          \(2x.\left(3x-2\right)=6x^2-4x\)

\(\Rightarrow5x-1-6x^2\ne6x^2-4x\)

\(\Rightarrow\left(1-3x\right)\left(2x-1\right)\ne2x\left(3x-2\right)\)

\(\Rightarrow\frac{1-3x}{2x}\ne\frac{3x-2}{2x-1}\)(1)

Ta lại có: \(\left(3x-2\right)\left(4x^2-2x\right)=12x^2-6x^2-8x^2+4x\)

                                                             \(=12x^3-14x^2+4x\)

                \(\left(2x-1\right)\left(3x-2\right)=6x^2-4x-3x+2\)

                                                         \(=6x^2-7x+2\)

\(\Rightarrow12x^3-14x^2+4x\ne6x^2-7x+2\)

\(\Rightarrow\left(3x-2\right)\left(4x^2-2x\right)\ne\left(2x-1\right)\left(3x-2\right)\)

\(\Rightarrow\frac{3x-2}{2x-1}\ne\frac{3x-2}{4x^2-2x}\) (2)

Từ (1) và (2) => \(\frac{1-3x}{2x}\ne\frac{3x-2}{2x-1}\ne\frac{3x-2}{4x^2-2x}\)

24 tháng 11 2019

\(A=x^2+4x+100\)

\(A=x\left(x+4\right)+100\ge100\)

Dấu " = " xảy ra 

\(\Leftrightarrow x\left(x+4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-4\end{cases}}\)

Vậy Min A = 100 \(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-4\end{cases}}\)

24 tháng 11 2019

\(B=-2x^2+6x-4\)

\(B=2x\left(3-x\right)-4\le-4\)

Dấu " = " xảy ra 

\(\Leftrightarrow2x\left(3-x\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)

Vậy Max B = -4 \(\Leftrightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)

24 tháng 11 2019

Tóm tắt:

m = 50 kg

S = 250 cm^2 = 0,025 mm^2

                                   Giải:

Ta có: p = 10 . m

             = 10 . 50

             = 500N

Áp suất của vật đó tác dụng lên mặt sàn là:

p = F / S = 500 / 0.025 = 20000 ( N/m^2 )

24 tháng 11 2019

b) \(9x^3+6x^2+x\)

\(=x\left(9x^2+6x+1\right)\)

\(=x\left(3x+1\right)^2\)

c) \(x^4+5x^3+15x-9\)

\(=\left(x^4-9\right)+5x\left(x^2+3\right)\)

\(=\left(x^2-3\right)\left(x^2+3\right)+5x\left(x^2+3\right)\)

\(=\left(x^2+3\right)\left(x^2-3+5x\right)\)

24 tháng 11 2019

a) \(x^2-y^2+10y-25\)

\(=x^2-\left(y^2-10y+25\right)\)

\(=x^2-\left(y-5\right)^2\)

\(=\left(x-y+5\right)\left(x+y-5\right)\)