K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 1 2019

cho bài cm hình đi

vd như Cho hình bình hành ABCD. trên các cạnh AB, BC, CD, DA theo thứ tự lấy các điểm M, N, P, Q sao cho AM = BN = CP = DQ. Chứng minh tứ giác MNPQ là hình bình hành

30 tháng 1 2019

Chả biết đề có đúng không nữa nhưng mà nếu thử x = 0 ; y = -1 thì VT = 1,5 > 1 :)

30 tháng 1 2019

Easy nà!

Đặt \(\frac{a}{b}=x;\frac{b}{c}=y;\frac{c}{a}=z\) thì xyz = 1

BĐT trở thành: \(x^2+y^2+z^2\ge x+y+z\)

Áp dụng BĐT AM-GM,ta có: \(VT+1=\left(x^2+y^2\right)+\left(z^2+1\right)\)

\(\ge2xy+2z\ge2\sqrt{2xy.2z}=4\sqrt{xyz}=4\)

Suy ra \(VT\ge3\) (1)

Lại có: \(x^2+1\ge2x;y^2+1\ge2y;z^2+1\ge2z\)

Cộng theo vế 3 BĐT: \(VT+3\ge2\left(x+y+z\right)\)

Kết hợp (1) suy ra \(2VT\ge VT+3\ge2\left(x+y+z\right)=2VP\)

Từ đây,ta có:\(2VT\ge2VP\Rightarrow VT\ge VP^{\left(đpcm\right)}\)

Dấu "=" xảy ra khi x = y = z = 1

30 tháng 1 2019

Bài 1 

a/ Ta có : Góc AOK = góc xAC ( AC // OB )

            Góc xAC = góc AEC ( góc tạo bởi t.t và dây cung và góc nt chắn cung  AC )

            Góc AEC = góc OEK ( 2 góc đối đỉnh )

=> góc AOK = góc OEK

Xét tam giác KOE và tam giác KAO ta có:

       Góc OKE = góc OKA ( góc chung )

       Góc OEK = góc AOK ( cmt )

=> tam giác KOE đồng dạng tam giác  KAO (g-g)

=> \(\frac{KO}{KA}=\frac{KE}{KO}\)=>\(KO^2=KA.KE\)(1)

b/ Xét tam giác BEK và tam giác AKB ta có :

       Góc EKB = góc AKB ( góc chung )

       Góc EBK = góc BAK ( góc tạo bởi t.t và dây cung và góc nt chắn cung EB )

=> tam giác BEK đồng dạng tam giác ABK (g-g)

=> \(\frac{KE}{KB}=\frac{KB}{KA}\)=>\(KB^2=KE.KA\)(2)

(1) và (2) => \(KO^2=KB^2\)=>\(KO=KB\)=> K là trung điểm OB

30 tháng 1 2019

à minh ghi thiếu, bài 2 là người ta giao cho tổ A làm trong một thời gian nhất định

29 tháng 1 2019

câu 1 thiếu đề nha bạn

30 tháng 1 2019

Ukm trua hom nay to giup

29 tháng 1 2019

tui nè