Cho ∆ABC nội tiếp đường tròn (O) . Lấy điểm D trên cung BC không chứa A . Gọi H,I,K theo thứ tự là hình chiếu của D , trên BC ,CA, AB
Cmr : a) BC/DH =AC/DI + AB /DK
b) H,I,K thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D E F M
c, Để chứng minh 4 điểm B,C,M,F cùng thuộc 1 đường tròn thì ta cần chứng minh tứ giác BCMF nội tiếp
C/m bằng cách : tổng 2 góc đối bằng 180o
Vì tứ giác ABEF nội tiếp => ^AFB = ^AEB
Mà ^AEB = ^CED (Đối đỉnh)
=>^AFB = ^CED
Vì tứ giác CEFD nội tiếp
=> ^CED = ^CFD
Do đó ^AFB = ^CFD
Dễ thấy tứ giác CEFD nội tiếp (M)
=> MC = MF
=> ^MCF = ^MFC
Vì CEFD nội tiếp
=>^ECF = ^EDF
Mà ^EDF = ^MFD ( tam giác MDF cân tại M)
=> ^ECF = ^MFD
Vì CA là phân giác ^BCF => ^BCA = ^ECF = ^MFD
Ta có : ^AFB + ^BFC + ^CFM + ^MFD = 180o
<=> ^CFD + ^BFM + ^MFD = 180o
<=> ^CFM + ^MFD + ^BFM + ^ACB = 180o
<=> ^FCM + ^ACF + ^BFM + ^ACB = 180o
<=> ^BFM + ^BCM = 180o
=> Tứ giác BCMF nội tiếp (Đpcm)
Bài này chuyển góc hơi rắc rối tí -.-
a/ Gọi \(F\in BC/A\widehat{D}B=F\widehat{D}C\)
Xét \(\Delta ADB\)và\(\Delta FDC\)ta có
\(\hept{\begin{cases}A\widehat{D}B=F\widehat{D}C\\B\widehat{A}D=F\widehat{C}D\end{cases}}\)(2 góc n.t chắn cung BD)
\(=>\Delta ADB\)đồng dạng \(\Delta CDF\)
=>\(\frac{AB}{CF}=\frac{DA}{DC}\left(1\right)\)
Xét \(\Delta DAK\)và \(\Delta DCH\)ta có
\(K\widehat{A}D=H\widehat{C}D\)(2 góc n.t chắn cung BD)
\(A\widehat{K}D=C\widehat{H}D\left(=90^0\right)\)
=>\(\Delta DAK\)đồng dạng \(\Delta DCH\)(g-g)
=>\(\frac{DA}{DC}=\frac{DK}{DH}\left(2\right)\)
(1) và (2) => \(\frac{AB}{CF}=\frac{DK}{DH}\)=>\(\frac{AB}{DK}=\frac{CF}{DH}\left(3\right)\)
C/m tương tự => \(\frac{AC}{DI}=\frac{BF}{DH}\left(4\right)\)
(3),(4) => \(\frac{AC}{DI}+\frac{AB}{DK}=\frac{CF}{DH}+\frac{BF}{DH}=\frac{BC}{DH}\left(đpcm\right)\)
b/ Xét tứ giác BKDH ta có : \(B\widehat{K}D+B\widehat{H}D=180^0\)
=> Tứ giác BKDH n.t => \(K\widehat{B}D=K\widehat{H}D\)
Mà \(K\widehat{B}D=I\widehat{C}D\)( tứ giác ABDC n.t (O))
Nên \(K\widehat{H}D=I\widehat{C}D\left(5\right)\)
Xét tứ giác IHDC ta có : \(D\widehat{H}C=D\widehat{IC}\left(=90^0\right)\)
=> Tứ giác IHDC n.t => \(I\widehat{C}D+I\widehat{H}D=180^0\left(6\right)\)
(5),(6) => \(K\widehat{H}D+I\widehat{H}D=180^0\)=> H,I,K thẳng hàng
Đường thẳng simson thôi
Mơn bạn nhìu