Một người cao 1,8m dùng giác kẽ để đo chiều cao một cây bàng CD.Biết rằng người đó đứng cách cây bàng 10m và góc quán sát từ giác kẽ ( quá chân C và đỉnh D của cây bàng ) là 45°.Tính chiều cao cây bàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Cauchy cho cặp số dương \(\dfrac{1}{\left(z+x\right)};\dfrac{1}{\left(z+y\right)}\)
\(\dfrac{1}{\left(z+x\right)}+\dfrac{1}{\left(z+y\right)}\ge\dfrac{1}{2}.\dfrac{1}{\sqrt[]{\left(z+x\right)\left(z+y\right)}}\)
\(\Rightarrow\dfrac{xy}{\sqrt[]{\left(z+x\right)\left(z+y\right)}}\le\dfrac{2xy}{z+x}+\dfrac{2xy}{z+y}\left(1\right)\)
Tương tự ta được
\(\dfrac{zx}{\sqrt[]{\left(y+z\right)\left(y+x\right)}}\le\dfrac{2zx}{y+z}+\dfrac{2zx}{y+x}\left(2\right)\)
\(\dfrac{yz}{\sqrt[]{\left(x+y\right)\left(x+z\right)}}\le\dfrac{2yz}{x+y}+\dfrac{2yz}{x+z}\left(3\right)\)
\(\left(1\right)+\left(2\right)+\left(3\right)\) ta được :
\(P=\dfrac{yz}{\sqrt[]{\left(x+y\right)\left(x+z\right)}}+\dfrac{zx}{\sqrt[]{\left(y+z\right)\left(y+x\right)}}+\dfrac{xy}{\sqrt[]{\left(z+x\right)\left(z+y\right)}}\le\dfrac{2yz}{x+y}+\dfrac{2yz}{x+z}+\dfrac{2zx}{y+z}+\dfrac{2zx}{y+x}+\dfrac{2xy}{z+x}+\dfrac{2xy}{z+y}\)
\(\Rightarrow P\le2\left(x+y+z\right)=2.3=6\)
\(\Rightarrow GTLN\left(P\right)=6\left(tạix=y=z=1\right)\)
Công thức Heron được áp dụng cho tất cả tam giác nên nó cũng được áp dụng cho tam giác tù hoặc vuông.
\(\left\{{}\begin{matrix}A\subset X\\X\subset B\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}X=\left\{1;2;3;4\right\}\\X=\left\{1;2;3;4;5\right\}\\X=\left\{1;2;3;4;5;6\right\}\\X=\left\{1;2;3;4;5;6;7\right\}\end{matrix}\right.\)
x ϵ {1;2;3;4}
x ϵ {1;2;3;4;5}
x ϵ {1;2;3;4;5;6}
x ϵ {1;2;3;4;5;6;7}
\(A=\left\{1;2;3;4\right\}\)
\(B=\left\{2;3;4;5;6\right\}\)
mà \(X\subset\left(A\cap B\right)\)
\(\Rightarrow\left\{{}\begin{matrix}X=\left\{2;3;4\right\}\\X=\left\{2;3\right\}\\X=\left\{2\right\}vàX=\left\{3\right\}vàX=\left\{4\right\}\end{matrix}\right.\)
\(tan45^o=\dfrac{CD-1,8}{10}\) (CD là chiều cao cây bàng)
\(\Rightarrow CD-1,8=10.tan45^o\)
\(\Rightarrow CD=10.1+1,8=11,8\left(m\right)\)
20m