Giải phương trình : ( dạng tổng hợp )
\(\left(3x+1\right)\sqrt{2x^2-1}=5x^2+\frac{3}{2}x-3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK \(k\left(k-p\right)\ge0\)
Để \(\sqrt{k^2-pk}\)là số nguyên
=> \(k\left(k-p\right)\)là số chính phương
Gọi UCLN của k và k-p là d
=> \(\hept{\begin{cases}k⋮d\\k-p⋮d\end{cases}}\)
=> \(p⋮d\)
Mà p là số nguyên tố
=> \(\orbr{\begin{cases}p=d\\d=1\end{cases}}\)
+ \(p=d\)=> \(k⋮p\)=> \(k=xp\left(x\in Z\right)\)
=> \(xp\left(xp-p\right)=p^2x\left(x-1\right)\)là số chính phương
=> \(x\left(x-1\right)\)là số chính phương
Mà \(x\left(x-1\right)\)là tích của 2 số nguyên liên tiếp
=> \(\orbr{\begin{cases}x=0\\x=1\end{cases}\Rightarrow}\orbr{\begin{cases}k=0\\k=p\end{cases}}\)
+\(d=1\)
=>\(\hept{\begin{cases}k=a^2\\k-p=b^2\end{cases}\left(a>b\right)}\)
=> \(p=\left(a-b\right)\left(a+b\right)\)
=> \(\hept{\begin{cases}a+b=p\\a-b=1\end{cases}}\)=> \(\hept{\begin{cases}a=\frac{p+1}{2}\\b=\frac{p-1}{2}\end{cases}}\)
=> \(k=\frac{\left(p+1\right)^2}{4}\)với p lẻ
Vậy \(k=0\)hoặc k=p hoặc \(k=\frac{\left(p+1\right)^2}{4}\forall plẻ\)
\(\sqrt{k^2-pk}\) là số nguyên dương => \(k^2-pk>0\Rightarrow k>p\)
Khang chú ý là sẽ không xảy ra k=0 hoặc k=p nhé!
a) Có AH2=HF.HD \(\rightarrow\)\(\frac{AH}{HF}=\frac{HD}{AH}\)
Xét \(\Delta\)AHD và \(\Delta\)FHA có:
\(\widehat{AHD}=\widehat{FHA}=90^o\)
\(\frac{AH}{HF}=\frac{HD}{AH}\)( chứng minh trên)
\(\rightarrow\Delta\)AHD\(\approx\)\(\Delta\)FHA (c-g-c)
\(\rightarrow\)\(\widehat{ADH}=\widehat{FAH}\)( 2 góc tương ứng)
mà \(\widehat{ADH}+\widehat{HAD}=90^o\)
nên \(\widehat{FAH}+\widehat{HAD}=90^o\)
hay \(\widehat{FAD}=90^o\)\(\rightarrow\Delta\)ADF vuông tại A
ĐKXĐ: Bạn tự làm nha
\(P=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\frac{2x+\sqrt{x}}{\sqrt{x}}+\frac{2\left(x-1\right)}{\sqrt{x}-1}\)
\(=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\frac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\frac{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}\)
\(=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\left(2\sqrt{x}+1\right)+2\left(\sqrt{x}+1\right)\)
\(=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-2\sqrt{x}-1+2\sqrt{x}+2\)
\(=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}+1\)
\(=\frac{x^2-\sqrt{x}+x+\sqrt{x}+1}{x+\sqrt{x}+1}\)
\(=\frac{x^2+x+1}{x+\sqrt{x}+1}\)
\(B=\left(\frac{\sqrt{a}}{\sqrt{a}-1}-\frac{1}{a-\sqrt{a}}\right):\left(\frac{1}{\sqrt{a}+1}-\frac{2}{a-1}\right)\)
\(=\left(\frac{\sqrt{a}}{\sqrt{a}-1}-\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\left(\frac{1}{\sqrt{a}+1}-\frac{2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\)
\(=\frac{a-1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\frac{1\left(\sqrt{a}-1\right)-2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\)
\(=\frac{\left(\sqrt{a}+1\right)}{\sqrt{a}}.\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\sqrt{a}-1-2}\)
\(=\frac{\left(\sqrt{a}+1\right)\left(a-1\right)}{\sqrt{a}\left(\sqrt{a}-3\right)}\)
ĐKXĐ: \(x\ge0;x\ne1;\)
\(P=\left(\frac{\sqrt{x}-2}{\sqrt{x}-1}-\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right).\frac{\left(1-x\right)^2}{2}\)
\(=\left(\frac{\sqrt{x}-2}{\sqrt{x}-1}-\frac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}\right).\frac{\left(1-x\right)^2}{2}\)
\(=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)^2-\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}.\frac{1-2x+x^2}{2}\)
\(=\frac{x\sqrt{x}+2x+\sqrt{x}-2x-4\sqrt{x}-2-x+\sqrt{x}-2\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^1}.\frac{\left(x-1\right)^2}{2}\)
\(=\frac{x\sqrt{x}-x-4\sqrt{x}}{\left(x-1\right)\left(\sqrt{x}+1\right)}.\frac{\left(x-1\right)^2}{2}\)
\(=\frac{\sqrt{x}\left(x-\sqrt{x}-4\right)\left(x-1\right)}{2\left(\sqrt{x}+1\right)}\)
\(=\frac{\sqrt{x}\left(x-\sqrt{x}-4\right)\left(\sqrt{x}-1\right)}{2}\)
Ta có: \(P=\left(\frac{\sqrt{x}-2}{\sqrt{x}-1}-\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right)\times\frac{\left(1-x\right)^2}{2}\)
\(P=\left(\frac{\sqrt{x}-2}{\sqrt{x}-1}-\frac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}\right).\frac{\left(1-x\right)^2}{2}\)
\(P=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)^2-\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}.\frac{\left(1-x\right)^2}{2}\)
\(P=\frac{x\sqrt{x}-4\sqrt{x}-x}{-\left(1-x\right)\left(\sqrt{x}+1\right)}.\frac{\left(1-x\right)^2}{2}\)
\(P=\frac{\sqrt{x}\left(x-4-\sqrt{x}\right)\left(\sqrt{x}-1\right)}{2}\)
ĐKXĐ : \(x^3+x^2+6\ge0\)
\(pt\Leftrightarrow x^2+x+9=6+x^2+x^3\)
\(\Leftrightarrow x^3-x-3=0\)
Đến đây có lẽ dùng công thức Cardano là ra , nhưng mà không biết bạn học Cardano chưa nhỉ ?
M đạt max khi \(\frac{1}{M}\) đạt min
\(\frac{1}{M}=1-\frac{1}{x}+\frac{1}{x^2}=\frac{1}{x^2}-\frac{1}{x}+\frac{1}{4}+\frac{3}{4}\)
\(\frac{1}{M}\ge\frac{3}{4}\Rightarrow M\le\frac{4}{3}\)
dấu = xảy ra khi x=1/2
a) \(\sqrt{a}+1>\sqrt{a+1}\)\(\Leftrightarrow\)\(a+2\sqrt{a}+1>a+1\)\(\Leftrightarrow\)\(2\sqrt{a}>0\)( luôn đúng \(\forall x>0\) )
b) \(a-1< a\)\(\Leftrightarrow\)\(\sqrt{a-1}< \sqrt{a}\)
c) \(\left(\sqrt{6}-1\right)^2=6-2\sqrt{6}+1>3-2\sqrt{3.2}+2=\left(\sqrt{3}-\sqrt{2}\right)^2\)
do \(\sqrt{6}-1>0;\sqrt{3}-\sqrt{2}>0\) nên \(\sqrt{6}-1>\sqrt{3}-\sqrt{2}\) ( đpcm )
Ta có \(0< 3y^2+1< 4y^2+4\)
=> \(y^4< y^4+3y^4+1< \left(y^2+2\right)^2\)
=> \(y^4< x^4< \left(y^2+2\right)^2\)
Mà x,y nguyên
=> \(x^2=y^2+1\)
=> \(y^4+2y^2+1=y^4+3y^2+1\)
=> \(y=0\)=> x=0
Vậy (x,y)=(0;0)
ĐKXĐ \(\left|x\right|\ge\frac{1}{\sqrt{2}}\)
Đặt \(\sqrt{2x^2-1}=t\ge0\)
<=> \(\left(3x+1\right)t=2t^2+x^2+\frac{3}{2}x-1\)
<=> \(2t^2-\left(3x+1\right)t+x^2+\frac{3}{2}x-1=0\)
\(\Delta_t=\left(x-3\right)^2\)
\(\Rightarrow\orbr{\begin{cases}t=\frac{2x-1}{2}\\t=\frac{x+2}{2}\end{cases}}\)
Phần còn lại bạn tự giải nhé
Cách khác, bình phương cũng ra nhé
Em giải cho chị bên h o c 2 4 rồi mà?
Link: Câu hỏi của Phạm Thị Thùy Linh (không biết admin đã fix lỗi ko dán link h o c 2 4 vào chưa, nếu chưa thì ib, em gửi full link)