Cho góc nhọn xOy. Trên tia Ox lấy hai điểm A,C. Trên tia Oy lấy hai điểm B và D sao cho OA = OB , AC = BD. a) Chứng minh tam giác AOD = tam giác BOC b) Gọi E là giao điểm AD và BC, chứng minh tam giác EAC bằng tam giác EBD. c) chứng minh OE là phân giác của góc xOy và OE vuông góc với CD . Mọi người giúp mình câu c nhé, mình like cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\dfrac{x^2+7}{x+1}=x-1+\dfrac{8}{x+1}\)
Để \(x^2+7⋮x+1\) => x+1 là ước của 8
\(\Rightarrow x+1=\left\{-8;-4;-2;-1;1;2;4;8\right\}\)
\(\Rightarrow x=\left\{-9;-5;-3;-2;0;1;3;7\right\}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Chiều dài là:
(32 + 8) : 2 = 20 (m)
Chiều rộng là:
20 - 8 = 12 (m)
a) Diện tích thửa ruộng:
20 × 12 = 240 (m²)
b) Số kg rau thu được trên thửa ruộng:
240 × 7 = 1680 (kg)
Số tiền bán rau:
1680 × 10000 = 16800000 (đồng)
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi số kẹo là x
x : 8 dư 5 -> x - 5 thuộc BC(12,8)
x : 12 dư 5
mà 80 ≤ x ≤110 => x-5ϵ\(\left\{96\right\}\) => x = 101
Tự kết luận
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Theo bài ra, suy ra : N + 1 chia hết cho cả 2, 3, 7 và 11
Do N là số dương nhỏ nhất
Nên N + 1 thuộc BCNN(2,3,7,11)
Mà BCNN(2,3,7,11) = 2.3.7.11 = 462
Hay N+1 = 462
=> N = 461
Theo bài ra, suy ra : N + 1 chia hết cho cả 2, 3, 7 và 11
Do N là số dương nhỏ nhất
Nên N + 1 thuộc BCNN(2,3,7,11)
Mà BCNN(2,3,7,11) = 2.3.7.11 = 462
Hay N+1 = 462
=> N = 461
x O y A C B D E
Ta có
OB=OA (gt); BD=AC (gt)
=> OB+BD=OA+AC => OD=OC
Xét tg AOD và tg BOC có
OD=OC (cmt); OA=OB (gt); \(\widehat{xOy}\) chung => tg AOD = tg BOC (c.g.c)
b/
Ta có tg AOD = tg BOC (cmt)
\(\Rightarrow\widehat{OAD}=\widehat{OBC}\)
\(\widehat{OAD}+\widehat{CAE}=\widehat{OAC}=180^o\)
\(\widehat{OBC}+\widehat{DBE}=\widehat{OBD}=180^o\)
\(\Rightarrow\widehat{OAC}=\widehat{OBD}\)
Xét tg EAC và tg EBD có
\(\widehat{OAC}=\widehat{OBD}\) (cmt)
tg AOD = tg BOC (cmt) \(\Rightarrow\widehat{ACE}=\widehat{BDE}\)
AC=BD (gt)
=> tg EAC = tg EBD (g.c.g)
c/
Xét tg OAE và tg OBE có
OA=OB (gt); OE chung
tg EAC = tg EBD (cmt) => AE=BE
=> tg OAE = tg OBE (c.c.c) \(\Rightarrow\widehat{xOE}=\widehat{yOE}\) => OE là phân giác góc \(\widehat{xOy}\)
Xét tg OCD có
OC=OD (cmt) => tg OCD cân tại O
\(\widehat{xOE}=\widehat{yOE}\) (cmt)
\(\Rightarrow OE\perp CD\) (trong tg cân đường phân giác của góc ở đỉnh đồng thời là đường cao)