CHo x,y >0thỏa mãn điều kiện (\(\left(\sqrt{x}+1\right).\left(\sqrt{y}+1\right)\ge9\)
Tìm GTNN của P=\(\frac{x^2}{y}+\frac{y^2}{x}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
10 và 12 nhé bạn.
---------------------CHÚC BẠN HỌC GIỎI----------------------------------
Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
Mới lớp 8, làm đc mấy thì làm nha :))
a,Tam giác CED đồng dạng với tam giác BAC nên CD/BC =DE/ AB= CE/ AC
=> x/ 4= CE/ 3 =>CE= 3x/4
b, ghi rõ lại được ko ạ!
viết lại câu hỏi khác đi, đề không rõ ràng X với x rồi . lung tung, dung công cụ soạn thảo đi nha bạn
gt\(\Leftrightarrow\sqrt{xy}+\sqrt{x}+\sqrt{y}+1=9\Leftrightarrow\sqrt{xy}+\sqrt{x}+\sqrt{y}=8\)
Ta có:\(\sqrt{xy}\le\frac{x+y}{2}\Leftrightarrow\left(\sqrt{x}-\sqrt{y}\right)^2\ge0\)(đúng);
\(\sqrt{x}\le\frac{x+4}{4}\Leftrightarrow x-4\sqrt{x}+4\ge0\Leftrightarrow\left(\sqrt{x}-2\right)^2\ge0\)(đúng)
\(\sqrt{y}\le\frac{y+4}{4}\Leftrightarrow\left(\sqrt{y}-2\right)^2\ge0\)(đúng)
Cộng theo vế ba BĐT ta có:\(8\le\sqrt{xy}+\sqrt{x}+\sqrt{y}\le\frac{x+y}{2}+\frac{x+4}{4}+\frac{y+4}{4}=\frac{3\left(x+y\right)}{4}+2\)
\(\Leftrightarrow\frac{3}{4}\left(x+y\right)\ge6\Leftrightarrow x+y\ge8\)
Lại có:\(\frac{x^2}{y}+\frac{y^2}{x}\ge\frac{\left(x+y\right)^2}{y+x}=x+y\ge8\)
Nên GTNN của P là 8 đạt được khi \(x=y=4\)
Ta có: \(\left(\sqrt{x}+1\right)\left(\sqrt{y}+1\right)\ge9\)
\(\Leftrightarrow\sqrt{xy}+\sqrt{x}+\sqrt{y}\ge8\)
Theo bất đẳng thức CÔ-si:
\(8\le\sqrt{xy}+\sqrt{x}+\sqrt{y}\le\frac{x+y}{2}+\frac{x+4}{4}+\frac{y+4}{4}\)
\(\Rightarrow\frac{2x+2y+x+4+y+4}{4}=\frac{3x+3y+8}{4}=\frac{3\left(x+y\right)}{4}+\frac{8}{4}=\frac{3\left(x+y\right)}{4}+2\)
\(\Rightarrow\frac{3\left(x+y\right)}{4}+2\ge8\)
\(\Rightarrow\frac{3\left(x+y\right)}{4}\ge6\)
\(\Rightarrow x+y\ge8\)
Theo BĐT Cô si: \(\hept{\begin{cases}\frac{x^2}{y}+y\ge2x\\\frac{y^2}{x}+x\ge2y\end{cases}\Rightarrow\frac{x^2}{y}+y+\frac{y^2}{x}+x\ge2x+2y}\)
\(\Rightarrow P=\frac{x^2}{y}+\frac{y^2}{x}\ge x+y\ge8\)
Vậy Gía trị nhỏ nhất của P là 8 khi x = y = 4