p và \(p^2+8\in P\) thì \(p^2+2\in P\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=111...1555...56\) (n cs 1, n-1 cs 5)
\(A=111...1000...0+555...50+6\) (n cs 1, n cs 0 (không tính số 0 ở số 555...50), n-1 cs 5)
\(A=111...1.10^n+555...5.10+6\) (n cs 1, n-1 cs 5)
\(A=\dfrac{999...9}{9}.10^n+\dfrac{5}{9}.999...9.10+6\) (n cs 9 ở phân số thứ nhất, n-1 cs 9 ở phân số thứ 2)
\(A=\dfrac{10^n-1}{9}.10^n+\dfrac{5}{9}.\left(10^{n-1}-1\right).10+6\)
\(A=\dfrac{\left(10^n\right)^2-10^n+5.10^n-50+54}{9}\)
\(A=\dfrac{\left(10^n\right)^2+4.10^n+4}{9}\)
\(A=\left(\dfrac{10^n+2}{3}\right)^2\)
Hiển nhiên \(3|10^n+2\) vì \(10^n+2\) có tổng các chữ số bằng 3, suy ra A là số chính phương.
Câu b áp dụng kĩ thuật tương tự nhé bạn.
a) \(\Delta ABE,\Delta ACF\) có \(\widehat{A}\) chung và \(\widehat{AEB}=\widehat{AFC}\left(=90^o\right)\) nên suy ra \(\Delta ABE~\Delta ACF\left(g.g\right)\) \(\Rightarrow\dfrac{AB}{AC}=\dfrac{AE}{AF}\Rightarrow AB.AF=AC.AE\).
b) Từ \(AB.AF=AC.AE\Rightarrow\dfrac{AE}{AB}=\dfrac{AF}{AC}\). Từ đó suy ra \(\Delta AEF~\Delta ABC\left(c.g.c\right)\) \(\Rightarrow\widehat{AFE}=\widehat{ACB}\)
c) Xét tam giác AEF có \(C\in AE,B\in AF,K\in EF\) và \(K,B,C\) thẳng hàng nên áp dụng định lý Menelaus, ta có \(\dfrac{KF}{KE}.\dfrac{CE}{CA}.\dfrac{BA}{BF}=1\) (1).
Mặt khác, cũng trong tam giác AEF, có \(C\in AE,B\in AF,I\in EF\) và AI, EB, FC đồng quy nên theo định lý Ceva, \(\dfrac{IF}{IE}.\dfrac{CE}{CA}.\dfrac{BA}{BF}=1\) (2).
Từ (1) và (2), suy ra \(\dfrac{KF}{KE}=\dfrac{IF}{IE}\Leftrightarrow KF.IE=KE.IF\)
\(AB^2=AH^2+BH^2\Rightarrow AH^2=AB^2-BH^2\left(1\right)\left(Pitago\right)\)
\(AC^2=AH^2+CH^2\Rightarrow AH^2=AC^2-CH^2\left(2\right)\left(Pitago\right)\)
\(\left(1\right),\left(2\right)\Rightarrow AC^2-CH^2=AB^2-BH^2\)
\(\Rightarrow AB^2+CH^2=AC^2+BH^2\)
\(\Rightarrow dpcm\)
Ta có \(AB^2-AC^2=\left(BH^2+AH^2\right)-\left(CH^2+AH^2\right)\) \(=BH^2-CH^2\) \(\Rightarrow AB^2+CH^2=AC^2+BH^2\), đpcm.
(Bài này kết quả vẫn đúng nếu không có điều kiện tam giác ABC vuông tại A.)
Bài 88: Gọi độ dài của cạnh tam giác vuông cân là: a (cm) a > 0
Theo pytago ta có: a2 + a2 = 22
2a2 = 4
a2 = 2
\(\left[{}\begin{matrix}a=\sqrt{2}\\a=-\sqrt{2}\end{matrix}\right.\)
vì a > 0 nên a = - \(\sqrt{2}\) (loại)
Độ dài cạnh góc vuông của tam giác vuông cân là \(\sqrt{2}\) cm
b, a2 + a2 = (\(\sqrt{2}\))2
2a2 = 2
a2 = 1
\(\left[{}\begin{matrix}a=1\\a=-1\end{matrix}\right.\)
Vì a > 0 nên a = - 1 loại
Vậy cạnh góc vuông của tam giác vuông cân là 1 cm
a) (2x - 5)2 - (5 + 2x) = 0
<=> 4x2 - 22x + 20 = 0
\(\Leftrightarrow\left(2x-\dfrac{11}{2}\right)^2=\dfrac{41}{4}\)
\(\Leftrightarrow x=\dfrac{\pm\sqrt{41}+11}{4}\)
b) \(27x^3-54x^2+36x=0\)
\(\Leftrightarrow x\left(3x^2-6x+4\right)=0\)
\(\Leftrightarrow x=0\) (Vì \(3x^2-6x+4=3\left(x-1\right)^2+1>0\forall x\))
c) x3 + 8 - (x + 2).(x - 4) = 0
\(\Leftrightarrow\left(x+2\right).\left(x^2-2x+4\right)-\left(x+2\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^2-3x+8\right)=0\)
\(\Leftrightarrow x=-2\) (Vì \(x^2-3x+8=\left(x-\dfrac{3}{2}\right)^2+\dfrac{23}{4}>0\))
d) \(x^6-1=0\)
\(\Leftrightarrow\left(x^2\right)^3-1=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^4+x^2+1\right)=0\)
\(\Leftrightarrow x^2-1=0\) (Vì \(x^4+x^2+1>0\))
\(\Leftrightarrow x=\pm1\)
\(d,x^6-1=0\\ \Leftrightarrow\left(x^2\right)^3-1^3=0\\ \Leftrightarrow\left(x^2-1\right)\left(x^4+x^2+1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x^4+x^2+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\\x^4+x^2+1=0\left(Vô.lí,vì:x^4\ge0;x^2\ge0,\forall x\in R\right)\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\\ c,\left(x^3+8\right)-\left(x+2\right)\left(x-4\right)=0\\ \Leftrightarrow\left(x^3+8\right)-\left(x^2-2x-8\right)=0\\ \Leftrightarrow x^3-x^2+2x+16=0\\ \Leftrightarrow x^3+2x^2-3x^2-6x+8x+16=0\\ \Leftrightarrow x^2\left(x+2\right)-3x\left(x+2\right)+8\left(x+2\right)=0\\ \Leftrightarrow\left(x^2-3x+8\right)\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2-3x+8=0\left(Vô.lí\right)\\x+2=0\end{matrix}\right.\Leftrightarrow x=-2\)
Ta có :
\(AH^2=AB^2+BH^2\left(1\right)\) (Δ ABH vuông tại H)
\(AH^2=AC^2+CH^2\left(2\right)\) (Δ ACH vuông tại H)
\(\left(1\right),\left(2\right)\Rightarrow AB^2+BH^2=AC^2+CH^2\)
\(\Rightarrow CH^2=AB^2+BH^2-AC^2\)
\(\Rightarrow CH^2=81+676-121=636\)
\(\Rightarrow CH=\sqrt[]{636}=\sqrt[]{4.159}=2\sqrt[]{159}\left(cm\right)\)
Vì AH là đường cao của tam giác ABC nên AH \(\perp\) BC \(\equiv\) H
⇒ \(\Delta\) AHB \(\perp\) \(\equiv\) H \(\Rightarrow\) AB > BH ⇒ 9 cm > 26 cm vô lý
Em có hai sựa lựa chọn: 1 là em chỉ ra cái sai của cô
2 là em xem lại đề bài của em
\(AH^2=BH.CH=18.32=576\Rightarrow AH=24\left(cm\right)\)
\(AB^2=AH^2+BH^2=576+324=900\) (Δ ABH vuông tại H)
\(\Rightarrow AB=30\left(cm\right)\)
\(AC^2=AH^2+CH^2=576+1024=1600\) (Δ ACH vuông tại H)
\(\Rightarrow AC=40\left(cm\right)\)
Xét tam giác AHB vuông tại H có:
AH2+HB2=AB2(định lý pythagore) (1)
Xét tam giác AHC vuông tại H có:
HA2+HC2=AC2 (định lý pythagore) (2)
Từ (1) và (2) ta cộng lại vế theo vế, có:
2AH2+BH2+CH2=AB2+AC2
<=>2AH2+BH2+CH2=BC2
<=> 2AH2+182+322=(18+32)2
<=>2AH2+1348=2500
<=>2AH2=2500-1348
<=>2AH2=1152
<=>AH2=1152:2
<=>AH2=576
<=>AH=\(\sqrt{576}\)
<=>AH=24(cm)
-Ta thay AH=24cm vào (1) ta có:
HB2+AH2=AB2
<=>182+242=AB2
<=>900=AB2
<=>\(AB=\sqrt{900}=30\)(cm)
-Ta thay AH=24cm vào (2) ta có:
HC2+HA2=AC2
<=>322+242=AC2
<=>1600=AC2
\(\Leftrightarrow AC=\sqrt{1600}=40\left(cm\right)\)
Vậy AB=30cm; AC=40cm
Hình a, b, c là tứ giác lồi
* Hình a:
- Các cạnh: AB, BC, CD, AD
- Các đỉnh: A, B, C, D
- Các góc: \(\widehat{ABC},\widehat{BCD},\widehat{CDA},\widehat{DAB}\)
* Hình b:
- Các cạnh: EF, FG, GH, HE
- Các đỉnh: E, F, G, H
- Các góc: \(\widehat{HEF},\widehat{EFG},\widehat{FGH},\widehat{GHE}\)
* Hình c:
- Các cạnh: \(IJ,JK,KL,LI\)
- Các đỉnh: \(I,J,K,L\)
- Các góc: \(\widehat{LIJ},\widehat{IJK},\widehat{JKL},\widehat{KLI}\)
Tứ giác lồi ABCD có 4 canh: AB,BC,CD,DA và 4 đỉnh: A,B,C,D và 4 góc \(\widehat{A},\widehat{B},\widehat{C},\widehat{D}\)
Tứ giác lồi EFGH có 4 canh: EF, FG, GH, HE và 4 đỉnh: E,F,G,H và 4 góc \(\widehat{E},\widehat{F},\widehat{G},\widehat{H}\)
Tứ giác lồi IJKL có 4 canh: IJ, JK, KL, LI và 4 đỉnh I,J,K,L và 4 góc \(\widehat{I},\widehat{J},\widehat{K},\widehat{L}\)
Hình 4 là ngũ giác và hình 5 là tam giác
Lời giải:
Nếu $p$ không chia hết cho $3$, tức là $p$ chia $3$ dư $\pm 1$
Khi đó $p^2$ chia $3$ dư $1$
$\Rightarrow p^2+8\vdots 3$
Mà $p^2+8>3$ nên $p^2+8$ không là số nguyên tố (không thỏa mãn giả thiết - loại)
Nếu $p\vdots 3$ thì $p=3, p^2+8=17$ đều là số nguyên tố.
Khi đó $p^2+2=3^2+2=11$ là số nguyên tố (tm)
Vậy ta có đpcm.