Cho tam giác ABC vuông tại A và AB < AC. Trên các tia BA và CA lấy điểm M,N thay đổi sao cho BM = CN. Chứng minh rằng đường trung trực của MN luôn đi qua 1 điểm cố định.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời:
Gọi vận tốc của bóng trên nền nhà là v1
Xét sau một thời gian t
quãng đường mà đỉnh đầu người đi được la s=v*t
quãng đường mà cái bóng trên nền nhà đi được s1=v1*t
vẽ hình ra, từ thời điểm ban đầu đến thời điểm t sẽ tính được tỷ lệ dựa vào định lý talet trong tam giác. ta có kết quả là :
v1= v*H/(H-h)
~Học tốt!~
Em làm cách này được không ạ?!
Với \(x\ne\pm y\), ta có: \(\frac{y}{x+y}+\frac{2y^2}{x^2+y^2}+\frac{4y^4}{x^4+y^4}+\frac{8y^8}{x^8-y^8}=4\)
\(\Leftrightarrow\frac{y}{x+y}+\frac{2y^2}{x^2+y^2}+\frac{4y^4\left(x^4-y^4\right)+8y^8}{\left(x^4-y^4\right)\left(x^4+y^4\right)}=4\)
\(\Leftrightarrow\frac{y}{x+y}+\frac{2y^2}{x^2+y^2}+\frac{4y^2\left(x^4+y^4\right)}{\left(x^4-y^4\right)\left(x^4+y^4\right)}=4\)
\(\Leftrightarrow\frac{y}{x+y}+\frac{2y^2}{x^2+y^2}+\frac{4y^4}{x^4-y^4}=4\)
\(\Leftrightarrow\frac{y}{x+y}+\frac{2y^2\left(x^2-y^2\right)+4y^4}{\left(x^2-y^2\right)\left(x^2+y^2\right)}=4\)
\(\Leftrightarrow\frac{y}{x+y}+\frac{2y^2\left(x^2+y^2\right)}{\left(x^2-y^2\right)\left(x^2+y^2\right)}=4\)
\(\Leftrightarrow\frac{y}{x+y}+\frac{2y^2}{x^2-y^2}=4\)
\(\Leftrightarrow\frac{y\left(x-y\right)+2y^2}{\left(x-y\right)\left(x+y\right)}=4\)
\(\Leftrightarrow\frac{y\left(x+y\right)}{\left(x+y\right)\left(x-y\right)}=4\)
\(\Leftrightarrow\frac{y}{x-y}=4\)
\(\Leftrightarrow y=4x-4y\Leftrightarrow5y=4x\left(đpcm\right)\)
Gọi vận tốc xe tải là x (km/h) (x>0)
=> vận tốc xe khách là x+12 (km/h)
Đổi 1h45'=1,75h
Quãng đường xe tải đi từ A đến điểm gặp nhau là
1,75x+x.1=2,75x (km)
Quãng đường xe khách đi từ B đến điểm gặp nhau là
1.75.(x+12) (km/h)
vì 2 xe đi ngược chiều trên quãng đường AB nên ta có
2,75x+1,75(x+12)=183
<=> x=36 (tmdk)
Vậy vận tốc xe tải là 36km/h
vận tốc xe khách là 36+12=48 km/h