Bài 5. (1 điểm) Bạn Đô làm một cái lồng đèn quả trám là hình ghép từ hai hình chóp tứ giác đều giống nhau có cạnh đáy $20$ cm, cạnh bên $32$ cm. Khoảng cách giữa hai đỉnh của hai hình chóp là $30$ cm.
Tính thể tích của lồng đèn.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét hai tam giác vuông: \(\Delta BHK\) và \(\Delta CHI\) có:
\(\widehat{BHK}=\widehat{CHI}\) (đối đỉnh)
\(\Rightarrow\Delta BHK\) ∽ \(\Delta CHI\left(g-g\right)\)
b) Do \(BH\) là tia phân giác của \(\widehat{KBC}\) (gt)
\(\Rightarrow\widehat{KBH}=\widehat{CBH}\)
\(\Rightarrow\widehat{KBH}=\widehat{CBI}\) (1)
Do \(\Delta BHK\) ∽ \(\Delta CHI\left(cmt\right)\)
\(\Rightarrow\widehat{KBH}=\widehat{ICH}\) (2)
Từ (1) và (2) \(\Rightarrow\widehat{ICH}=\widehat{CBI}\)
Xét hai tam giác vuông: \(\Delta CIB\) và \(\Delta HIC\) có:
\(\widehat{CBI}=\widehat{ICH}\left(cmt\right)\)
\(\Rightarrow\Delta CIB\) ∽ \(\Delta HIC\left(g-g\right)\)
\(\Rightarrow\dfrac{CI}{IH}=\dfrac{IB}{CI}\)
\(\Rightarrow CI^2=IH.IB\)
c) Do \(CI\perp BH\) tại \(I\) (gt)
\(\Rightarrow BI\perp AC\)
\(\Rightarrow BI\) là đường cao của \(\Delta ABC\)
Lại có:
\(CK\perp KB\left(gt\right)\)
\(\Rightarrow CK\perp AB\)
\(\Rightarrow CK\) là đường cao thứ hai của \(\Delta ABC\)
Mà H là giao điểm của \(BI\) và \(CK\) (gt)
\(\Rightarrow AH\) là đường cao thứ ba của \(\Delta ABC\)
\(\Rightarrow AD\perp BC\)
Xét hai tam giác vuông: \(\Delta BKH\) và \(\Delta BDH\) có:
\(BH\) là cạnh chung
\(\widehat{KBH}=\widehat{DBH}\) (do BH là tia phân giác của \(\widehat{B}\))
\(\Rightarrow\Delta BKH=\Delta BDH\) (cạnh huyền - góc nhọn)
\(\Rightarrow BK=BD\) (hai cạnh tương ứng)
\(\Rightarrow B\) nằm trên đường trung trực của DK (3)
Do \(\Delta BKH=\Delta BDH\left(cmt\right)\)
\(\Rightarrow HK=HD\) (hai cạnh tương ứng)
\(\Rightarrow H\) nằm trên đường trung trực của DK (4)
Từ (3) và (4) \(\Rightarrow BH\) là đường trung trực của DK
\(\Rightarrow\widehat{DKH}+\widehat{BHK}=90^0\)
Mà \(\widehat{BHK}=\widehat{CHI}\) (cmt)
\(\Rightarrow\widehat{DKH}+\widehat{CHI}=90^0\) (*)
\(\Delta ABC\) có:
\(BH\) là đường phân giác (cmt)
\(BH\) cũng là đường cao (cmt)
\(\Rightarrow\Delta ABC\) cân tại B
\(\Rightarrow BH\) là đường trung trực của \(\Delta ABC\)
\(\Rightarrow I\) là trung điểm của AC
\(\Rightarrow KI\) là đường trung tuyến của \(\Delta AKC\)
\(\Delta AKC\) vuông tại K có KI là đường trung tuyến ứng với cạnh huyền AC
\(\Rightarrow KI=IC=IA=\dfrac{AC}{2}\)
\(\Rightarrow\Delta IKC\) cân tại \(I\)
\(\Rightarrow\widehat{IKC}=\widehat{ICK}\)
\(\Rightarrow\widehat{IKH}=\widehat{ICH}\)
Mà \(\widehat{ICH}+\widehat{CHI}=90^0\)
\(\Rightarrow\widehat{IKH}+\widehat{CHI}=90^0\) (**)
Từ (*) và (**) \(\Rightarrow\widehat{IKH}=\widehat{DKH}\)
\(\Rightarrow KH\) là tia phân giác của \(\widehat{IKD}\)
Hay \(KC\) là tia phân giác của \(\widehat{IKD}\)
a) Vì tam giác 𝐾𝐵𝐶KBC vuông tại 𝐾K suy ra 𝐾𝐵𝐻^=90∘KBH=90∘
Vì 𝐶𝐼⊥𝐵𝐼CI⊥BI (gt) suy ra 𝐶𝑙𝐻^=90∘ClH=90∘
Xét △𝐾𝐵𝐻△KBH và △𝐶𝐻𝐼△CHI có:
𝐾𝐵𝐻^=𝐶𝐼𝐻^=90∘KBH=CIH=90∘;
𝐵𝐻𝐾^=𝐶𝐻𝐼^BHK=CHI (đối đỉnh)
Suy ra Δ𝐵𝐻𝐾∽Δ𝐶𝐻𝐼ΔBHK∽ΔCHI (g.g)
b) Ta có Δ𝐵𝐻𝐾∽Δ𝐶𝐻𝐼ΔBHK∽ΔCHI suy ra 𝐻𝐵𝐾^=𝐻𝐶𝐼^HBK=HCI (hai góc tương ứng)
Mà 𝐵𝐻BH là tia phân giác của 𝐴𝐵𝐶^ABC nên 𝐻𝐵𝐾^=𝐻𝐵𝐶^HBK=HBC.
Do đó 𝐻𝐵𝐶^=𝐻𝐶𝐼^HBC=HCI.
Xét △𝐶𝐼𝐵△CIB và △𝐻𝐼𝐶△HIC có:
𝐶𝐼𝐵^CIB chung;
𝐼𝐵𝐶^=𝐻𝐶𝐼^IBC=HCI (cmt)
Vậy Δ𝐶𝐼𝐵≈Δ𝐻𝐼𝐶ΔCIB≈ΔHIC (g.g) suy ra 𝐶𝐼𝐻𝐼=𝐼𝐵𝐼𝐶HICI=ICIB
Hay 𝐶𝐼2=𝐻𝐼.𝐼𝐵CI2=HI.IB
c) Xét △𝐴𝐵𝐶△ABC có 𝐵𝐼⊥𝐴𝐶BI⊥AC; 𝐶𝐾⊥𝐴𝐵CK⊥AB; 𝐵𝐼∩𝐶𝐾={𝐻}BI∩CK={H}
Nên 𝐻H là trực tâm △𝐴𝐵𝐶△ABC suy ra 𝐴𝐻⊥𝐵𝐶AH⊥BC tại 𝐷D.
Từ đó ta có △𝐵𝐾𝐶∽△𝐻𝐷𝐶△BKC∽△HDC (g.g) nên 𝐶𝐵𝐶𝐻=𝐶𝐾𝐶𝐷CHCB=CDCK
Suy ra 𝐶𝐵𝐶𝐾=𝐶𝐻𝐶𝐷CKCB=CDCH nên △𝐵𝐻𝐶∽△𝐾𝐷𝐶△BHC∽△KDC (c.g.c)
Khi đó 𝐻𝐵𝐶^=𝐷𝐾𝐶^HBC=DKC (hai góc tương ứng)
Chứng minh tương tự 𝐻𝐴𝐶^=𝐼𝐾𝐶^HAC=IKC
Mà 𝐻𝐴𝐶^=𝐻𝐵𝐶^HAC=HBC (cùng phụ 𝐴𝐶𝐵^ACB )
Suy ra 𝐷𝐾𝐶^=𝐼𝐾𝐶^ DKC=IKC.
Vậy 𝐾𝐶KC là tia phân giác của 𝐼𝐾𝐷^IKD.
Bài 5:
Thể tích hình lập phương lớn:
$196:5\times 8=313,6$ (cm3)
Bài 6:
Thời gian ô tô đi quãng đường AB (không kể thời gian nghỉ):
15 giờ 57 phút - 10 giờ 35 phút - 1 giờ 22 phút = 4 giờ
Vận tốc của ô tô là:
$180:4=45$ (km/h)
a) ∆ABC vuông tại A (gt)
⇒ ∠ABC + ∠BCA = 90⁰ (hai góc nhọn trong tam giác vuông phụ nhau)
b) Do CE là đường phân giác của ∆ABC (gt)
⇒ CE là tia phân giác của ∠ACB
⇒ ∠ACE = ∠BCE
⇒ ∠ACE = ∠HCE
Xét hai tam giác vuông: ∆ACE và ∆HCE có:
CE là cạnh chung
∠ACE = ∠HCE (cmt)
⇒ ∆ACE = ∆HCE (cạnh huyền - góc nhọn)
⇒ AC = HC (hai cạnh tương ứng)
c) Do ∆ACE = ∆HCE (cmt)
⇒ AE = HE (hai cạnh tương ứng)
⇒ E nằm trên đường trung trực của AH (1)
Do AC = HC (cmt)
⇒ C nằm trên đường trung trực của AH (2)
Từ (1) và (2) ⇒ CE là đường trung trực của AH
Mà I là giao điểm của AH và CE (gt)
⇒ I là trung điểm của AH
⇒ IA = IH
d) Trên tia đối của tia MA lấy điểm D sao cho AM = DM
⇒ M là trung điểm của AD
Do M là trung điểm của BC (gt)
⇒ BM = CM
Xét ∆ABM và ∆DCM có:
AM = DM
∠AMB = ∠DMC (đối đỉnh)
BM = CM (cmt)
⇒ ∆ABM = ∆DCM (c-g-c)
⇒ ∠BAM = ∠CDM (hai góc tương ứng)
Mà ∠BAM và ∠CDM là hai góc so le trong
⇒ AB // CD
Mà AB ⊥ AC (∆ABC vuông tại A)
⇒ CD ⊥ AC
Do ∆ABM = ∆DCM (cmt)
⇒ AB = CD (hai cạnh tương ứng)
Xét hai tam giác vuông: ∆ABD và ∆CDB có:
AB = CD (cmt)
DB là cạnh chung
⇒ ∆ABD = ∆CDB (hai cạnh góc vuông)
⇒ AD = BC (hai cạnh tương ứng)
Mà M là trung điểm của AD (cmt)
⇒ AD = 2AM
⇒ BC = 2AM
ta có : (x-13+y)2024+(x-6-y)2024=0
do (x-13+y)2024 ≥ 0 ∀ x,y
(x-6-y)2024 ≥ 0 ∀ x,y
⇒ (x-13+y)2024+(x-6-y)2024 ≥ 0
Dấu "=" xảy ra khi x-13+y=0
x-6-y=0
⇔ x+y = 13 (1)
x-y =6 (2)
Từ (1) và (2) suy ra x=9,5 và y = 3,5
Vậy ....
Đây là dạng toán nâng cao chuyên đề tổng hiệu lồng nhau, cấu trúc thi chuyên, thi học sinh giỏi các cấp, thi violympic. Hôm nay olm.vn sẽ hướng dẫn em giải chi tiết dạng này như sau:
Giải
Theo bài ra ta có sơ đồ:
Theo sơ đồ ta có:
Trâu nặng số ki-lô-gam là: (750 - 20): 2 = 365 (kg)
Tổng số ki-lô-gam của bò và lợn là: 750 - 365 = 385 (kg)
Ta có sơ đồ:
Lợn nặng số ki-lô-gan là:
(385 - 85): 2 = 150 (kg)
Bò nặng số ki-lô-gam là: 385 - 150 = 235 (kg)
Đáp số: 235 kg
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
\(\widehat{HBA}\) chung
Do đó: ΔHBA~ΔABC
=>\(\dfrac{HB}{AB}=\dfrac{BA}{BC}\)
=>\(BA^2=BH\cdot BC\)
b:
Xét ΔABC có
M,N lần lượt là trung điểm của AB,AC
=>MN là đường trung bình của ΔABC
=>MN//BC và MN=1/2BC
Xét tứ giác BMNC có MN//BC
nên BMNC là hình thang
Hình thang BMNC có \(\widehat{MBC}=\widehat{NCB}\)
nên BMNC là hình thang cân
ΔABC vuông cân tại A
mà AH là đường cao
nên AH là đường trung tuyến
=>\(AH=\dfrac{BC}{2}=MN\)
c: Xét ΔCAB có
CM,AH là các đường trung tuyến
CM cắt AH tại K
Do đó: K là trọng tâm của ΔCAB
=>\(AK=\dfrac{2}{3}AH=\dfrac{2}{3}\cdot\dfrac{1}{2}\cdot BC=\dfrac{1}{3}BC\)
=>BC=3AK
a: Sau 1 năm thì dân số của thành phố A là:
\(3000000\left(1+1,8\%\right)=3054000\left(người\right)\)
b: Sau 3 năm thì dân số của thành phố A là:
\(3000000\left(1+1,8\%\right)^3\simeq3164933\left(người\right)\)
Chiều cao của mỗi hình chóp tứ giác đều là:
30:2=1530:2=15 (m).
Thể tích của lồng đèn quả trám là:
𝑉=2.(13.20.20.15)=4000V=2.(31.20.20.15)=4000 (cm33).