K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7

Gọi T là giao điểm của EF và BC. M là trung điểm DT.

Ta thấy \(AF=AE;BF=BD;CD=CE\) nên \(\dfrac{DB}{DC}.\dfrac{EC}{EA}.\dfrac{FA}{FB}=1\)

Theo định lý Menalaus, ta có \(\dfrac{TB}{TC}.\dfrac{EC}{EA}.\dfrac{FA}{FB}=1\)

\(\Rightarrow\dfrac{DB}{DC}=\dfrac{TB}{TC}\)  (1)

Đặt \(MD=MT=x;MB=b;MC=c\). Khi đó từ (1) có:

\(\dfrac{MD-MB}{MC-MD}=\dfrac{MB+MT}{MC+MT}\)

\(\Leftrightarrow\dfrac{x-b}{c-x}=\dfrac{b+x}{c+x}\)

\(\Leftrightarrow xc+x^2-bc-bx=bc-bx+cx-x^2\)

\(\Leftrightarrow x^2=bc\)

\(\Leftrightarrow MT^2=MD^2=MH^2=MB.MC\)

\(\Leftrightarrow\dfrac{MH}{MC}=\dfrac{MB}{MH}\)

Tam giác MBH và MHC có:

\(\dfrac{MH}{MC}=\dfrac{MB}{MH}\) và \(\widehat{HMB}\) chung

\(\Rightarrow\Delta MBH\sim\Delta MHC\left(c.g.c\right)\)

\(\Rightarrow\widehat{MHB}=\widehat{MCH}\)

Lại có \(\widehat{MHT}=\widehat{MTH}\) 

\(\Rightarrow\widehat{MHB}+\widehat{MHT}=\widehat{MCH}+\widehat{MTH}\)

\(\Rightarrow\widehat{BHT}=\widehat{CHE}\) (vì \(\widehat{CHE}\) là góc ngoài tại H của tam giác CHT)

\(\Rightarrow90^o-\widehat{BHT}=90^o-\widehat{CHE}\)

\(\Rightarrow\widehat{BHD}=\widehat{CHD}\)

\(\Rightarrow\) HD là tia phân giác của \(\widehat{BHC}\) (đpcm)

BM và BN lần lượt là các tia phân giác của các góc trong và các góc ngoài tại đỉnh B của ΔABC

=>BM và BN là hai tia phân giác của hai góc kề bù

=>\(\widehat{MBN}=90^0\)

=>ΔBMN vuông tại B

23 tháng 7

Gọi số đó là số có dạng: \(\overline{ab}\left(10a+b\right)\) 

ĐK: \(a,b\in N,1\le a\le9;0\le b\le9\)

Tổng chữ số hàng đơn vị và 2 lần hàng chục là 17 nên ta có: 

\(2a+b=17\left(1\right)\)

Nếu đổi chỗ 2 chữ số thì được số mới hơn số cũ 45 đơn vị ta có:

\(\overline{ba}-\overline{ab}=45\\ < =>10b+a-10a-b=45\\ < =>9b-9a=45\\ < =>b-a=5\left(2\right)\)

Từ (1) và (2) ta có hpt: \(\left\{{}\begin{matrix}2a+b=17\\b-a=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=4\\b=9\end{matrix}\right.\)

Số cần tìm là: 49 

Gọi số dãy ghế ban đầu là x(dãy)

(Điều kiện: \(x\in Z^+\))

Số ghế trong 1 dãy ban đầu là \(\dfrac{200}{x}\left(ghế\right)\)

Số dãy ghế lúc sau là x+2(dãy)

Số ghế trong 1 dãy lúc sau là \(\dfrac{242}{x+2}\left(ghế\right)\)

Mỗi dãy tăng thêm 1 ghế nên ta có: \(\dfrac{242}{x+2}-\dfrac{200}{x}=1\)

=>\(\dfrac{242x-200\left(x+2\right)}{x\left(x+2\right)}=1\)

=>x(x+2)=42x-400

=>\(x^2-40x+400=0\)

=>\(\left(x-20\right)^2=0\)

=>x-20=0

=>x=20(nhận)

Vậy: Số dãy ghế ban đầu là 20 dãy

Số ghế trong 1 dãy ban đầu là \(\dfrac{200}{20}=10\left(ghế\right)\)

23 tháng 7

\(\left\{{}\begin{matrix}4x+5y=11\\2x-3y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x+5y=11\\4x-6y=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}11y=11\\2x=3y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{11}{11}=1\\2x=3\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=1\\x=\dfrac{3}{2}\end{matrix}\right.\)

24 tháng 7

A B C D O E F K M G

a/

\(\widehat{CBD}=90^o\) (góc nt chắn nửa đường tròn) \(\Rightarrow BD\perp BC\)

\(OA\perp BC\) (2 tiếp tuyến cùng xp từ 1 điểm ngoài đường tròn thì đường nối điểm đó với tâm vuông góc với dây cung nối 2 tiếp điểm)

=> BD//OA (Cùng vuông góc với BC)

b/

BD//OA (cmt) => DE//OA (1)

Xét tg vuông ODE và tg vuông COA có

\(\widehat{EDO}=\widehat{AOC}\) (góc đồng vị)

OD=OC (bán kính (O))

=> tg ODE = tg COA (Hai tg vuông có cạnh góc vuông và góc nhọn tương ứng bằng nhau)

=> DE=OA (2)

Từ (1) và (2) => AEDO là hình bình hành (Tứ giác có 1 cặp cạnh đối // và băng nhau là hbh)

=> AE//CD (cạnh đối hbh) \(\Rightarrow\widehat{AEO}=\widehat{EOD}=90^o\) (góc so le trong)

Ta có E; B; C cùng nhìn OA dưới 3 góc bằng nhau và bằng \(90^o\)

=> E; B; C cùng nằm trên đường tròn đường kính OA => O; C; A; E; B thuộc 1 đường tròn)

c/ AD cắt OE và BK lần lượt tại G và M

\(BK\perp CD\left(gt\right);OE\perp CD\left(gt\right)\) => BK//OE

\(\Rightarrow\dfrac{BM}{EG}=\dfrac{KM}{OG}\) 

Mà AEDO là hbh (cmt) => EG=OG (trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường) 

=> BM=KM

 

23 tháng 7

sửa 3(a,b) thành 3(a+b) 

 

AH
Akai Haruma
Giáo viên
23 tháng 7

Lời giải:
Xét hiệu:

$x^4+y^4-xy(x^2+y^2)=(x^4-x^3y)-(xy^3-y^4)=x^3(x-y)-y^3(x-y)$

$=(x-y)(x^3-y^3)=(x-y)(x-y)(x^2+xy+y^2)=(x-y)^2(x^2+xy+y^2)$

Ta thấy:

$(x-y)^2\geq 0$ với mọi $x,y$

$x^2+xy+y^2=(x+\frac{y}{2})^2+\frac{3y^2}{4}\geq 0$ với mọi $x,y$

$\Rightarrow x^4+y^4-xy(x^2+y^2)=(x-y)^2(x^2+xy+y^2)\geq 0$

$\Rightarrow xy(x^2+y^2)\leq x^4+y^4$

Ta có đpcm
Dấu "=" xảy ra khi $x=y$.

ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x\ne\dfrac{1}{9}\end{matrix}\right.\)

\(Q=\left(\dfrac{\sqrt{x}-1}{3\sqrt{x}-1}-\dfrac{1}{3\sqrt{x}+1}+\dfrac{8\sqrt{x}}{9x-1}\right):\left(1-\dfrac{3\sqrt{x}-2}{3\sqrt{x}+1}\right)\)

\(=\left(\dfrac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)-3\sqrt{x}+1+8\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}\right):\dfrac{3\sqrt{x}+1-3\sqrt{x}+2}{3\sqrt{x}+1}\)

\(=\dfrac{3x-2\sqrt{x}-1+5\sqrt{x}+1}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}\cdot\dfrac{3\sqrt{x}+1}{3}\)

\(=\dfrac{3x+3\sqrt{x}}{3\left(3\sqrt{x}-1\right)}=\dfrac{x+\sqrt{x}}{3\sqrt{x}-1}\)

23 tháng 7

Đề bài rút gọn biểu thức