Tìm x,y,z biết:
\(\dfrac{xy}{2y+4x}\)=\(\dfrac{yz}{4z+6y}\)=\(\dfrac{zx}{6x+2z}\)=\(^{\dfrac{x^2+y^2+z^2}{2^2+4^2+6^2}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(F=-1-\dfrac{1}{3}-\dfrac{1}{6}-...-\dfrac{1}{1225}\)
\(=-2\left(\dfrac{1}{2}+\dfrac{1}{6}+...+\dfrac{1}{2450}\right)\)
\(=-2\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)\)
\(=-2\left(1-\dfrac{1}{50}\right)=-2\cdot\dfrac{49}{50}=-\dfrac{49}{25}\)
\(x^2y-5y-8x-1=0\)
\(\Leftrightarrow y\left(x^2-5\right)=8x+1\)
\(\Rightarrow y=\dfrac{8x+1}{x^2-5}\) (1)
y nguyên \(\Rightarrow\dfrac{8x+1}{x^2-5}\) nguyên
\(\Rightarrow8x+1⋮x^2-5\)
\(\Rightarrow x\left(8x+1\right)⋮x^2-5\)
\(\Rightarrow8\left(x^2-5\right)+x+40⋮x^2-5\)
\(\Rightarrow x+40⋮x^2-5\)
\(\Rightarrow8\left(x+40\right)-\left(8x+1\right)⋮x^2-5\)
\(\Rightarrow329⋮x^2-5\)
\(\Rightarrow x^2-5\inƯ\left(329\right)\)
Mà \(x^2-5\ge-5;\forall x\)
\(\Rightarrow x^2-5\in\left\{-1;1;11;29;319\right\}\)
\(\Rightarrow x^2\in\left\{4;6;16;34;324\right\}\)
\(\Rightarrow x^2\in\left\{4;16;324\right\}\) do \(x^2\) là SCP
\(\Rightarrow x\in\left\{-18;-4;-2;2;4;18\right\}\)
Thay lần lượt vào (1) ta được: \(\left(x;y\right)=\left(-2;15\right);\left(2;-17\right);\left(4;3\right)\)
a: \(\widehat{ABH}+\widehat{HAB}=90^0\)(ΔAHB vuông tại H)
\(\widehat{HAB}+\widehat{HAC}=\widehat{BAC}=90^0\)
Do đó: \(\widehat{ABH}=\widehat{HAC}\)
b: \(\widehat{CAD}+\widehat{BAD}=90^0\)
\(\widehat{CDA}+\widehat{HAD}=90^0\)(ΔHAD vuông tại H)
mà \(\widehat{BAD}=\widehat{HAD}\)(AD là phân giác của góc BAH)
nên \(\widehat{CAD}=\widehat{CDA}\)
a: Xét ΔFDM có
FH là đường cao
FH là đường trung tuyến
Do đó: ΔFDM cân tại F
=>FM=FD
b: Xét ΔIDM có
IH là đường cao
IH là đường trung tuyến
Do đó: ΔIDM cân tại I
ΔIDM cân tại I
mà IH là đường cao
nên IH là phân giác của góc DIM
c: ΔDEF cân tại D
mà DH là đường cao
nên H là trung điểm của EF
=>\(HE=HF=\dfrac{EF}{2}=\dfrac{FI}{2}\)
=>IF=2/3IH
Xét ΔIDM có
IH là đường trung tuyến
\(IF=\dfrac{2}{3}IH\)
Do đó: F là trọng tâm của ΔIDM
=>MF cắt DI tại trung điểm của DI
=>N là trung điểm của DI
Xét ΔDMI có
H,N lần lượt là trung điểm của DM,DI
=>HN là đường trung bình của ΔDMI
=>HN//MI
a; |6\(x\) + 22| + (y - 21)2 = 0
|6\(x+22\) | ≥ 0; (y - 21)2 ≥ 0
|6\(x\) + 22| + (y - 21)2 = 0 ⇔ \(\left\{{}\begin{matrix}6x+22=0\\y-21=0\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}6x=-22\\y=21\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}x=-\dfrac{22}{6}\\y=21\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}x=-\dfrac{11}{3}\\y=21\end{matrix}\right.\)
Vậy (\(x\); y) = (- \(\dfrac{11}{3}\); 21)
b;
A = |\(\dfrac{4}{3}\) - \(\dfrac{1}{4}\)| - \(\dfrac{2}{11}\)
A = |\(\dfrac{16}{12}\) - \(\dfrac{3}{12}\)| - \(\dfrac{2}{11}\)
A = | \(\dfrac{13}{12}\)| - \(\dfrac{2}{11}\)
A = \(\dfrac{13}{12}\) - \(\dfrac{2}{11}\)
A = \(\dfrac{143}{132}\) - \(\dfrac{24}{132}\)
A = \(\dfrac{119}{132}\)
ĐKXĐ: x<>-1
\(C=\dfrac{x^2-1}{x+1}=\dfrac{\left(x-1\right)\cdot\left(x+1\right)}{x+1}=x-1\)
=>Khi \(x\in Z\backslash\left\{-1\right\}\) thì C là số nguyên
Sửa đề: `S = 1/(2^2) - 1/(2^4) + 1/(2^6) - ... - 1/(2^2020) `
`=> 2^2 S = 1 - 1/(2^2) + 1/(2^4) - ... - 1/(2^2018) `
`=> 4S + S = (1 - 1/(2^2) + 1/(2^4) - ... - 1/(2^2018) ) + ( 1/(2^2) - 1/(2^4) + 1/(2^6) - ... - 1/(2^2020) )`
`=> 5S = 1 - 1/(2^2020) < 1`
`=> S < 1/5 `
`=> S < 0,2 (đpcm)`
Để giải hệ phương trình này, chúng ta có thể sử dụng phương pháp giải hệ phương trình bằng cách loại bỏ biến một cách tuần tự. Dưới đây là cách giải:
Từ phương trình thứ nhất: (xy + 2y = 4x + 6) Ta có thể viết lại thành: (2y + xy = 4x + 6) (y(2 + x) = 4x + 6) (y = \frac{4x + 6}{2 + x})
Từ phương trình thứ hai: (yz + 4z = 6y) Ta có thể viết lại thành: (4z + yz = 6y) (z(4 + y) = 6y) (z = \frac{6y}{4 + y})
Từ phương trình thứ ba: (zx + 6x = 2z) Ta có thể viết lại thành: (6x + zx = 2z) (x(6 + z) = 2z) (x = \frac{2z}{6 + z})
Substitute (y) từ phương trình thứ nhất vào phương trình thứ ba, ta được: (y = \frac{4(\frac{2z}{6 + z}) + 6}{2 + \frac{2z}{6 + z}})
Substitute (z) từ phương trình thứ hai vào phương trình thứ ba, ta được: (x = \frac{2(\frac{6(\frac{6y}{4 + y})}{4 + (\frac{6y}{4 + y})})}{6 + \frac{6y}{4 + y}})
Từ đó, chúng ta có thể tìm ra giá trị cụ thể của (x), (y), (z).