K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2024

a) Gọi x là số đo cung nhỏ AB (x > 0)

Số đo cung lớn AB là 3x

Ta có:

x + 3x = 360⁰

4x = 360⁰

x = 360⁰ : 4

x = 90⁰

Vậy số đo cung nhỏ AB là 90⁰

Số đo cung lớn AB là 3.90⁰ = 270⁰

b)

loading...

Do số đo cung nhỏ AB là 90⁰ (cmt)

⇒ ∠AOB = 90⁰

⇒ ∆AOB vuông tại O

Do OH là khoảng cách từ O đến AB

⇒ OH ⊥ AB

⇒ H là trung điểm của AB

⇒ OH là đường trung tuyến ứng với cạnh huyền AB của ∆AOB vuông tại O

⇒ OH = AB : 2

11 tháng 10 2024

Gọi x là số đo cung nhỏ AB (x > 0)

Số đo cung lớn AB là 2x

Ta có:

x + 2x = 360⁰

3x = 360⁰

x = 360⁰ : 3

x = 120⁰

⇒ ∠AOB = 120⁰

∆AOB có:

OA = OB = R

⇒ ∆AOB cân tại O

⇒ ∠OAB = ∠OBA = (180⁰ - ∠AOB) : 2

= (180⁰ - 120⁰) : 2

= 30⁰

Ta có hình vẽ sau:

loading...

Vẽ đường cao OH của ∆OAB

⇒ ∆OAH vuông tại H

⇒ cosOAH = AH : OA

⇒ AH = OA.cosOAH

= R.cos30⁰

loading...

Do OH ⊥ AB

⇒ H là trung điểm của AB

⇒ AB = 2AH

loading...  

10 tháng 10 2024

Ta có: \(\widehat{ABC}=90^0\)

=>B nằm trên đường tròn đường kính AC(1)

Ta có: \(\widehat{ADC}=90^0\)

=>D nằm trên đường tròn đường kính AC(2)

Từ (1),(2) suy ra B,D cùng nằm trên đường tròn đường kính AC

=>A,B,C,D cùng thuộc đường tròn tâm O, đường kính AC

Xét (O) có

AC là đường kính

BD là dây

Do đó: BD<AC

10 tháng 10 2024

Xét tứ giác BC'B'C có \(\widehat{BC'C}=\widehat{BB'C}=90^0\)

nên BC'B'C là tứ giác nội tiếp đường tròn đường kính BC

=>BC'B'C là tứ giác nội tiếp đường tròn tâm O, đường kính BC

Xét (O) có

BC là đường kính

B'C' là dây

Do đó: B'C'<BC

10 tháng 10 2024

Gọi OH là khoảng cách từ O đến dây MN

=>OH\(\perp\)MN tại H

ΔOMN cân tại O

mà OH là đường cao

nên H là trung điểm của MN

=>\(HM=HN=\dfrac{R}{2}\)

ΔOHM vuông tại H

=>\(OH^2+HM^2=OM^2\)

=>\(OH^2=R^2-\left(\dfrac{R}{2}\right)^2=\dfrac{3R^2}{4}\)

=>\(OH=\sqrt{\dfrac{3R^2}{4}}=\dfrac{R\sqrt{3}}{2}\)

=>Khoảng cách từ O đến dây MN là \(\dfrac{R\sqrt{3}}{2}\)

10 tháng 10 2024

Gọi giao điểm của MN với OA là H

Vì MN\(\perp\)OA tại trung điểm của OA

nên MN\(\perp\)OA tại H và H là trung điểm của OA

Xét ΔOMA có 

MH là đường cao

MH là đường trung tuyến

Do đó: ΔOMA cân tại M

=>MO=MA

mà OM=OA

nên OM=MA=OA

=>ΔOMA đều

=>\(\widehat{MOA}=60^0\)

Xét ΔMHO vuông tại H có \(sinMOH=\dfrac{MH}{MO}\)

=>\(\dfrac{MH}{10}=sin60=\dfrac{\sqrt{3}}{2}\)

=>\(MH=10\cdot\dfrac{\sqrt{3}}{2}=5\sqrt{3}\left(cm\right)\)

ΔOMN cân tại O

mà OH là đường cao

nên H là trung điểm của MN

=>\(MN=2\cdot MH=2\cdot5\sqrt{3}=10\sqrt{3}\left(cm\right)\)

AH
Akai Haruma
Giáo viên
29 tháng 1 2023

Lời giải:
Giả sử mỗi người ăn 1 suất gạo/ ngày

Sau 10 ngày, đơn vị còn số suất gạo là:

$750\times (50-10)\times 1=30000$ (suất)

Tổng số người trong đơn vị sau khi bổ sung thêm người là:
$30000:25:1=1200$ (người)

Số người đến thêm:

$1200-750=450$ (người)

6 tháng 10 2024

xắp xếp các số0,15,5,14,2,35,1,075,1,1 theo thứ tự từ bé đến lớn

22 tháng 2 2016

Là đường thẳng có hơn hoặc bằng 3 điểm giao nhau

22 tháng 2 2016

 Đồng quy là gặp nhau tại một điểm. 
Ba đường cao trong một tam giác đồng quy tại 1 điểm. Điểm này gọi là trực tâm của tam giác. 
Tính chất nếu hai đường cao trong tam giác cắt nhau tại một điểm thì từ đó suy ra đường cao thứ 3 cũng đi qua giao điểm đó 
Ba đường trung tuyến trong một tam giác đồng quy tại 1 điểm. Điểm này gọi là trọng tâm của tam giác. 
Tính chất nếu hai đường trung tuyến trong tam giác cắt nhau tại một điểm thì từ đó suy ra đường trung tuyến thứ 3 cũng đi qua giao điểm đó. Trong tâm chia đoạn thẳng trung tuyến thành 3 phần: Từ trọng tâm lên đỉnh chiếm 2/3 độ dài trung tuyến đó. 
Ba đường phân giác trong một tam giác đồng quy tại 1 điểm. Điểm này gọi là tâm đường tròn nội tiếp tam giác . 
Tính chất nếu hai đường phân giác trong tam giác cắt nhau tại một điểm thì từ đó suy ra đường phân giác thứ 3 cũng đi qua giao điểm đó. Giao điểm 3 đường phân giác cách đều 3 cạnh của tam giác. 
Ba đường trung trực trong một tam giác đồng quy tại 1 điểm. Điểm này gọi là tâm đường tròn ngoại tiếp tam giác. 
Tính chất nếu hai đường trung trực trong tam giác cắt nhau tại một điểm thì từ đó suy ra đường trung trực thứ 3 cũng đi qua giao điểm đó. Giao điểm 3 đường trung trực cách đều 3 đỉnh của tam giác. 
KHi gặp bài toán chứng minh đồng quy thông thường ta đưa ba đường thẳng đó về 3 đường cao trong 1 tam giác hoắc 3 trung tuyến... 
Còn cách khác là tìm giao điểm của hai đường chứng minh đường thứ 3 củng đi qua giao điểm đó tức là 3 đường thẳng đồng quy Mệt quál nghỉ

10 tháng 10 2024

130 - ( 100 + x ) = 25

          100 + x  = 130 - 25

          100 + x  = 105

                    x  = 105 - 100

                    x  =      5

  Vậy x = 5                   

10 tháng 10 2024

130-(100+x)=25

=>100+x=130-25=105

=>\(x=105-100=5\)