trong các tích sau hãy tìm tích bằng nhau mà không cần tính kết quả chúng: 13.18; 20.45; 13.2.45; 3.15.20; 26 .13; 2.10.5.9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: 272:16-5+4(30-5-255:17)
=17-5+4(25-15)
\(=12+4\cdot10=12+40=52\)
2: \(25\times8-12\times5+272:17-8\)
\(=200-60+16-8\)
=140+8=148
3: \(125:25+14-142:71\)
=5+14-2
=5+12=17
4: \(13\times17-256:16+14:7-1\)
=221-16+2-1
=205+1=206
6: \(289:17-324:18+18:3\)
=17-18+6
=23-18=5
Gọi số dãy ghế ban đầu là x(dãy)
(Điều kiện: \(x\in Z^+\))
Số ghế trong 1 dãy ban đầu là \(\dfrac{200}{x}\left(ghế\right)\)
Số dãy ghế lúc sau là x+2(dãy)
Số ghế trong 1 dãy lúc sau là \(\dfrac{242}{x+2}\left(ghế\right)\)
Mỗi dãy tăng thêm 1 ghế nên ta có: \(\dfrac{242}{x+2}-\dfrac{200}{x}=1\)
=>\(\dfrac{242x-200\left(x+2\right)}{x\left(x+2\right)}=1\)
=>x(x+2)=42x-400
=>\(x^2-40x+400=0\)
=>\(\left(x-20\right)^2=0\)
=>x-20=0
=>x=20(nhận)
Vậy: Số dãy ghế ban đầu là 20 dãy
Số ghế trong 1 dãy ban đầu là \(\dfrac{200}{20}=10\left(ghế\right)\)
Ui em ơi, bài này thì ko giải được bằng cách C1 đâu em ạ, có gì thì kb với chị để chị giải thích rõ hơn nhé vì chị cũng thi nhiều cuộc thi QT rồi nên cũng khá nhiều kinh nhiệm nếu muốn bằng cách c1 thì có lẽ chị ko phù hợp để chỉ em đâu
a: Số mét vải chị An mua là \(90\cdot\dfrac{2}{9}=20\left(m\right)\)
Số mét vải chị Bình mua là \(90\cdot\dfrac{1}{6}=15\left(m\right)\)
b: Số mét vải còn lại là:
90-20-15=70-15=55(m)
Mỗi mét vuông chứ còn sao???
Đáy bé là:
\(60x\dfrac{3}{5}=36\left(m\right)\)
Chiều cao là:
\(60x\dfrac{3}{4}=45\left(m\right)\)
Diện tích hình thang là:
\(\left(60+36\right)x45:2=2160\left(m^2\right)\)
Số thóc mẹ thu được là:
\(2,5x2160=5400\left(tạ\right)\)
Đáp số :.....
Lần sau viết đầy đủ nha.
a: \(2x^2+4x+2-2y^2\)
\(=2\left(x^2+2x+1-y^2\right)\)
\(=2\left[\left(x+1\right)^2-y^2\right]\)
\(=2\left(x+1+y\right)\left(x+1-y\right)\)
b: \(2xy-x^2-y^2+16\)
\(=16-\left(x^2-2xy+y^2\right)\)
\(=16-\left(x-y\right)^2=\left(4-x+y\right)\left(4+x-y\right)\)
c: \(x^3+y^3+x+y\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)+\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2+1\right)\)
d: \(x^3-y^3+x-y\)
\(=\left(x-y\right)\left(x^2+xy+y^2\right)+\left(x-y\right)\)
\(=\left(x-y\right)\left(x^2+xy+y^2+1\right)\)
e: SỬa đề: \(x^3-3x^2y+3xy^2-y^3+y^2-x^2\)
\(=\left(x^3-3x^2y+3xy^2-y^3\right)-\left(x^2-y^2\right)\)
\(=\left(x-y\right)^3-\left(x-y\right)\left(x+y\right)\)
\(=\left(x-y\right)\left[\left(x-y\right)^2-x-y\right]\)
\(=\left(x-y\right)\left(x^2-2xy+y^2-x-y\right)\)
\(20\cdot45=3\cdot15\cdot20=2\cdot10\cdot5\cdot9\)
20 . 45 = 3 . 15 . 20 = 2 . 10 . 5 . 9