Một hình tròn khi giảm 10% độ dài đường kính thì chu vi đường tròn đó giảm đi 6,28cm Hỏi chu đường tròn ban đầu là bao nhiêu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5/9 - (7/8 + 5/9)
= 5/9 - 7/8 - 5/9
= (5/9 - 5/9) - 7/8
= 0 - 7/8
= -7/8
\(\dfrac{5}{9}-\left(\dfrac{7}{8}+\dfrac{5}{9}\right)\)
Áp dụng quy tắc dấu ngoặc , ta có :
= \(\dfrac{5}{9}-\dfrac{7}{8}-\dfrac{5}{9}\)
= \(\left(\dfrac{5}{9}-\dfrac{5}{9}\right)-\dfrac{7}{8}\) (sử dụng tính chất kết hợp )
= \(0-\dfrac{7}{8}\)
= \(-\dfrac{7}{8}\)
Ta có: \(A=\dfrac{6n}{3n+1}=\dfrac{2\left(3n+1\right)-2}{3n+1}=2-\dfrac{2}{3n+1}\) (đk: \(n\ne-\dfrac{1}{3}\))
Để A là số nguyên thì \(\dfrac{2}{3n+1}\) có giá trị nguyên
\(\Rightarrow2⋮3n+1\)
\(\Rightarrow3n+1\inƯ\left(2\right)\)
\(\Rightarrow3n+1\in\left\{1;2;-1;-2\right\}\)
\(\Rightarrow n\in\left\{0;\dfrac{1}{3};-\dfrac{2}{3};-1\right\}\) (tmđk)
Vậy: ...
A = \(\dfrac{1}{10}\) + \(\dfrac{1}{15}\) + \(\dfrac{1}{21}\) + ... + \(\dfrac{1}{120}\)
A = \(\dfrac{2}{2}\).(\(\dfrac{1}{10}\) + \(\dfrac{1}{15}\) + \(\dfrac{1}{21}\) + ... + \(\dfrac{1}{120}\))
A = \(2\).(\(\dfrac{1}{20}\) + \(\dfrac{1}{30}\) + \(\dfrac{1}{42}\)... + \(\dfrac{1}{240}\))
A = 2.(\(\dfrac{1}{4.5}\) + \(\dfrac{1}{5.6}\) + \(\dfrac{1}{6.7}\) + ... + \(\dfrac{1}{15.16}\))
A = 2.(\(\dfrac{1}{4}\) - \(\dfrac{1}{5}\) + \(\dfrac{1}{5}\) - \(\dfrac{1}{6}\) + \(\dfrac{1}{6}\) - \(\dfrac{1}{7}\) + ... + \(\dfrac{1}{15}\) - \(\dfrac{1}{16}\))
A = 2.(\(\dfrac{1}{4}\) - \(\dfrac{1}{16}\))
A = 2.\(\dfrac{3}{16}\)
A = \(\dfrac{3}{8}\)
`#3107.101107`
\(\dfrac{x+2}{-4}=\dfrac{-9}{x+2}\\ \Rightarrow\left(x+2\right)^2=\left(-4\right)\cdot\left(-9\right)\\ \Rightarrow\left(x+2\right)^2=36\\ \Rightarrow\left(x+2\right)^2=\left(\pm6\right)^2\\ \Rightarrow\left[{}\begin{matrix}x+2=6\\x+2=-6\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=4\\x=-8\end{matrix}\right.\)
Vậy, \(x\in\left\{4;-8\right\}.\)
a: Vì OA và OB là hai tia đối nhau
nên O nằm giữa A và B
Ta có: O nằm giữa A và B
OA=OB(=3cm)
Do đó: O là trung điểm của AB
b: Trên tia Oy, ta có: OC<OB
nên C nằm giữa O và B
Để C là trung điểm của OB nên \(OC=\dfrac{OB}{2}\)
=>\(a=\dfrac{3}{2}=1,5\left(cm\right)\)
\(\dfrac{-3}{8}\cdot16\cdot\dfrac{8}{17}-0,375\cdot7\cdot\dfrac{9}{17}\)
\(=-\dfrac{3}{8}\cdot\dfrac{128}{17}-\dfrac{3}{8}\cdot\dfrac{63}{17}\)
\(=-\dfrac{3}{8}\left(\dfrac{128}{17}+\dfrac{63}{17}\right)=-\dfrac{3}{8}\cdot\dfrac{191}{17}=\dfrac{-573}{136}\)
- \(\dfrac{3}{8}\).16.\(\dfrac{8}{17}\) - 0,375.7\(\dfrac{9}{17}\)
Đề như này phải không em?
Gọi d=ƯCLN(-6n+5;4n-3)
=>\(\left\{{}\begin{matrix}-6n+5⋮d\\4n-3⋮d\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}12n-10⋮d\\12n-9⋮d\end{matrix}\right.\)
=>\(12n-10-12n+9⋮d\)
=>\(-1⋮d\)
=>d=1
=>ƯCLN(-6n+5;4n-3)=1
=>\(\dfrac{-6n+5}{4n-3}\) là phân số tối giản
Bài 8:
\(\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{97\cdot99}\)
\(=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{99}\)
\(=\dfrac{1}{3}-\dfrac{1}{99}=\dfrac{33}{99}-\dfrac{1}{99}=\dfrac{32}{99}\)
Bài 6:
a:
b: I là trung điểm của MN
=>\(MI=\dfrac{MN}{2}=\dfrac{7}{2}=3,5\left(cm\right)\)
Chu vi đường tròn ban đầu:
6,28 : 10% = 62,8 (cm)