a) 6x-10y-15z và x+y+z=90
b) 9x-3y-2z và x-y+z=50
c) 2x-3y=-2z và 2x-3y+4z=48
d) x+1/3=y+2/4=z+3/5 và x+y+z=30
e) x-1/3=x-2/4=z-3/5 và x+y+z=30
g) x/4=y/3 và x:y=12
h) -6x=-15y=10z và x.y.z=240
i) -18z=-12y=24z và x.y.z+576
k) x/2=y/3:y/2=z/5 và x+y+z=50
I) x/2=y/3:2y=3z và x+y+z=49
\(a\)) Đặt \(6x=10y=15z=k\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{k}{6}\\y=\dfrac{k}{10}\\z=\dfrac{k}{15}\end{matrix}\right.\) \(\Rightarrow\dfrac{k}{6}+\dfrac{k}{10}+\dfrac{k}{15}=90\)
\(\Leftrightarrow\dfrac{k}{3}=90\Leftrightarrow k=270\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{270}{6}=45\\y=\dfrac{270}{10}=27\\z=\dfrac{270}{15}=18\end{matrix}\right.\)
Vậy \(x=45;y=27;z=18\)
\(b\)) Đặt \(9x=3y=2z=q\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{q}{9}\\y=\dfrac{q}{3}\\z=\dfrac{q}{2}\end{matrix}\right.\) \(\Rightarrow\dfrac{q}{9}-\dfrac{q}{3}+\dfrac{q}{2}=50\)
\(\Rightarrow\dfrac{5q}{18}=50\) \(\Leftrightarrow q=180\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{180}{9}=20\\y=\dfrac{180}{3}=60\\z=\dfrac{180}{2}=90\end{matrix}\right.\)
Vậy \(x=20;y=60;z=90\)
\(c\)) Đặt \(2x=3y=-2z=r\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{r}{2}\\y=\dfrac{r}{3}\\z=-\dfrac{r}{2}\end{matrix}\right.\) \(\Rightarrow2\cdot\dfrac{r}{2}-3\cdot\dfrac{r}{3}+4\cdot\left(-\dfrac{r}{2}\right)=48\)
\(\Leftrightarrow-2r=48\) \(\Leftrightarrow r=-24\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{-24}{2}=-12\\y=\dfrac{-24}{3}=-8\\z=-\dfrac{-24}{2}=12\end{matrix}\right.\)
Vậy \(x=-12;y=-8;z=12\)
\(d\)) Đặt \(\dfrac{x+1}{3}=\dfrac{y+2}{4}=\dfrac{z+3}{5}=u\)
\(\Rightarrow\left\{{}\begin{matrix}x=3u-1\\y=4u-2\\z=5u-3\end{matrix}\right.\) \(\Rightarrow3u-1+4u-2+5u-3=30\)
\(\Leftrightarrow12u=36\) \(\Leftrightarrow u=3\)
\(\Rightarrow\left\{{}\begin{matrix}x=3\cdot3-1=8\\y=4\cdot3-2=10\\z=5\cdot3-3=12\end{matrix}\right.\)
Vậy \(x=8;y=10;z=12\)
\(e\)) Đặt \(\dfrac{x-1}{3}=\dfrac{x-2}{4}=\dfrac{z-3}{5}=p\)
\(\Rightarrow\left\{{}\begin{matrix}x=3p+1\\y=4p+2\\z=5p+3\end{matrix}\right.\) \(\Rightarrow3p+1+4p+2+5p+3=30\)
\(\Leftrightarrow12p=24\) \(\Leftrightarrow p=2\)
\(\Rightarrow\left\{{}\begin{matrix}x=3\cdot2+1=7\\y=4\cdot2+2=10\\z=5\cdot2+3=13\end{matrix}\right.\)
Vậy \(x=7;y=10;z=13\)
\(g\)) \(\left\{{}\begin{matrix}\dfrac{x}{4}=\dfrac{y}{3}\\x:y=12\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x:y=\dfrac{4}{3}\\x:y=12\end{matrix}\right.\) (Vô lí)
Vậy không có giá trị \(x,y\) thỏa mãn
\(h\)) Đặt \(-6x=-15y=10z=a\)
\(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{a}{6}\\y=-\dfrac{a}{15}\\z=\dfrac{a}{10}\end{matrix}\right.\) \(\Rightarrow\left(-\dfrac{a}{6}\right)\cdot\left(-\dfrac{a}{15}\right)\cdot\dfrac{a}{10}=240\)
\(\Leftrightarrow\dfrac{a^3}{900}=240\) \(\Leftrightarrow a^3=216000\) \(\Leftrightarrow a=60\)
\(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{60}{6}=-10\\y=-\dfrac{60}{15}=-4\\z=\dfrac{60}{10}=6\end{matrix}\right.\)
Vậy \(x=-10;y=-4;z=6\)
\(i\)) Đặt \(-18x=-12y=24z=s\)
\(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{s}{18}\\y=-\dfrac{s}{12}\\z=\dfrac{s}{24}\end{matrix}\right.\) \(\Rightarrow\left(-\dfrac{s}{18}\right)\cdot\left(-\dfrac{s}{12}\right)\cdot\dfrac{s}{24}=576\)
\(\Leftrightarrow\dfrac{s^3}{5184}=576\) \(\Leftrightarrow s^3=2985984\) \(\Leftrightarrow s=144\)
\(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{144}{18}=-8\\y=-\dfrac{144}{12}=-12\\z=\dfrac{144}{24}=6\end{matrix}\right.\)
Vậy \(x=-8;y=-12;z=6\)
\(k\)) \(\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{3}\\\dfrac{y}{2}=\dfrac{z}{5}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2y}{3}\\z=\dfrac{5y}{2}\end{matrix}\right.\)\(\Rightarrow\dfrac{2y}{3}+y+\dfrac{5y}{2}=50\)
\(\Leftrightarrow\dfrac{25y}{6}=50\) \(\Leftrightarrow y=12\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{2\cdot12}{3}=8\\z=\dfrac{5\cdot12}{2}=30\end{matrix}\right.\)
Vậy \(x=8;y=12;z=30\)
\(l\)) \(\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{3}\\2y=3z\end{matrix}\right.\) \(\Rightarrow x=z=\dfrac{2y}{3}\)\(\Rightarrow\dfrac{2y}{3}+y+\dfrac{2y}{3}=49\)
\(\Leftrightarrow\dfrac{7y}{3}=49\) \(\Leftrightarrow y=21\)
\(\Rightarrow x=z=\dfrac{2\cdot21}{3}=14\)
Vậy \(x=14;y=21;z=14\).