giải hệ hộ tớ
\(\dfrac{x}{y}\) + \(\dfrac{y}{x}\) =2
x(2x-1)-y(y-5) +4=0
gấp ạ>.<
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác MAOB có \(\widehat{MAO}+\widehat{MBO}=90^0+90^0=180^0\)
nên MAOB là tứ giác nội tiếp
b: Ta có; ΔOCD cân tại O
mà OK là đường trung tuyến
nên OK\(\perp\)CD tại K
Ta có: \(\widehat{OKM}=\widehat{OAM}=\widehat{OBM}=90^0\)
=>O,K,A,M,B cùng thuộc đường tròn đường kính OM
c: Xét (O) có
MA,MB là các tiếp tuyến
Do đó: MA=MB
=>M nằm trên đường trung trực của BA(1)
Ta có: OA=OB
=>O nằm trên đường trung trực của BA(2)
Từ (1),(2) suy ra OM là đường trung trực của AB
=>OM\(\perp\)AB tại H
Xét ΔOHN vuông tại H và ΔOKM vuông tại K có
\(\widehat{HON}\) chung
Do đó: ΔOHN~ΔOKM
=>\(\dfrac{OH}{OK}=\dfrac{ON}{OM}\)
=>\(OH\cdot OM=OK\cdot ON\left(3\right)\)
Xét ΔOAM vuông tại A có AH là đường cao
nên \(OH\cdot OM=OA^2=R^2\left(4\right)\)
Từ (3),(4) suy ra \(OK\cdot ON=R^2=OD^2\)
=>\(\dfrac{OK}{OD}=\dfrac{OD}{ON}\)
Xét ΔOKD và ΔODN có
\(\dfrac{OK}{OD}=\dfrac{OD}{ON}\)
\(\widehat{KOD}\) chung
Do đó: ΔOKD~ΔODN
=>\(\widehat{OKD}=\widehat{ODN}=90^0\)
=>ND là tiếp tuyến của (O)
Lời giải:
a.
Vì $M$ là điểm chính giữa cung $AB$ nên $OM\perp AB$
$\Rightarrow \widehat{KOA}=\widehat{MOA}=90^0$
Lại có: $\widehat{AEK}=\widehat{AEB}=90^0$ (góc nt chắn nửa đường tròn)
Xét tứ giác $EAOK$ có tổng hai góc đối nhau $\widehat{KOA}+\widehat{AEK}=90^0+90^0=180^0$
$\Rightarrow EAOK$ là tgnt.
b.
Xét tam giác $EAM$ và $FBM$ có:
$AM=BM$ (do $M$ nằm chính giữa cung AB)
$EA=FB$
$\widehat{EAM}=\widehat{EBM}=\widehat{FBM}$ (góc nt chắn cung $EM$)
$\Rightarrow \triangle EAM=\triangle FBM$ (c.g.c)
$\Rightarrow EM=FM(1)$
Và $\widehat{EMA}=\widehat{FMB}$
$\Rightarrow \widehat{EMA}+\widehat{MAF}=\widehat{FMB}+\widehat{MAF}=\widehat{AMB}=90^0$ (góc nt chắn nửa đường tròn)
$\Rightarrow \widehat{EMF}=90^0(2)$
Từ $(1); (2)$ suy ra $EMF$ là tam giác vuông cân tại $M$
c.
Vì $EMF$ vuông cân tại $M$ nên $\widehat{MEK}=45^0$
$\widehat{DEM}=180^0-\widehat{AEB}-\widehat{MEK}=180^0-90^0-45^0=45^0$
$\Rightarrow \widehat{DEM}=\widehat{MEK}$
$\Rightarrow EM$ là phân giác trong của $\widehat{DEK}$
$\Rightarrow \frac{MK}{MD}=\frac{EK}{ED}$
$\Rightarrow MK.ED=EK.MD$ (đpcm)
Ms lớp 8 nhg lm thử hoii
Gọi số sản phẩm lm trong 1 ngày dự định là x(sản phẩm)
Số sản phẩm thực tế lm trong 1 ngày : x+10(sản phẩm)
Tổng sản phẩm thực tế: 600+50=650(sản phẩm)
Ta có pt:
\(\dfrac{600}{x}-\dfrac{650}{x+10}=2\)
\(\dfrac{600\left(x+10\right)}{x\left(x+10\right)}-\dfrac{650x}{x\left(x+10\right)}\)\(=\dfrac{2x\left(x+10\right)}{x+10}\)
\(600x+6000-650x=2x^2+20x\)
\(-50x+6000=2x^2+20x\)
\(x^2+35x=3000\)
\(x=40\)
=> Thời gian sx theo hợp đồng= \(\dfrac{600}{40}\)=15 ngày
Thay x=-2 và y=0 vào (d), ta được:
\(-2\left(m+1\right)+m^2-4=0\)
=>\(m^2-4-2m-2=0\)
=>\(m^2-2m-6=0\)
=>\(m=1\pm\sqrt{7}\)
a:
b: Phương trình hoành độ giao điểm là:
\(\dfrac{1}{2}x^2=2x-2\)
=>\(\dfrac{1}{2}x^2-2x+2=0\)
\(\text{Δ}=\left(-2\right)^2-4\cdot\dfrac{1}{2}\cdot2=4-4=0\)
=>(P) tiếp xúc với (d) tại điểm có hoành độ là: \(x=\dfrac{-\left(-2\right)}{2\cdot\dfrac{1}{2}}=2\)
Khi x=2 thì \(y=2\cdot2-2=2\)
Vậy: (d) giao (P) tại A(2;2)
a: Xét (O) có
ΔAKB nội tiếp
AB là đường kính
Do đó: ΔAKB vuông tại K
=>AK\(\perp\)MB tại K
Xét tứ giác AIKM có \(\widehat{AIM}=\widehat{AKM}=90^0\)
nên AIKM là tứ giác nội tiếp
b: Ta có: AIKM là tứ giác nội tiếp
=>\(\widehat{MIK}=\widehat{MAK}\)
mà \(\widehat{MAK}=\widehat{KBA}\left(=90^0-\widehat{KAB}\right)\)
nên \(\widehat{MIK}=\widehat{KBA}\)
=>\(\widehat{KBO}+\widehat{KIO}=180^0\)
=>KIOB là tứ giác nội tiếp