Bài 3. Cho tam giác ABC có BC = a, AC = b, AB = c. Chứng minh rằng:
sin\(\dfrac{A}{2}\)≤\(\dfrac{a}{b+c}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔAHC vuông tại H có \(tanC=\dfrac{AH}{HC}\)
=>\(\dfrac{8}{HC}=tan45=1\)
=>HC=8(cm)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH^2=HB\cdot HC\)
=>\(HB\cdot8=8^2\)
=>HB=8(cm)
BC=BH+CH=8+8=16(cm)
ΔAHC vuông tại H
=>\(HA^2+HC^2=AC^2\)
=>\(AC=\sqrt{8^2+8^2}=8\sqrt{2}\left(cm\right)\)
ΔAHB vuông tại H
=>\(HA^2+HB^2=AB^2\)
=>\(AB=\sqrt{8^2+8^2}=8\sqrt{2}\left(cm\right)\)
Xét ΔABC vuông tại A có \(sinB=\dfrac{AC}{BC}\)
=>\(\dfrac{AC}{15}=\dfrac{3}{5}\)
=>\(AC=15\cdot\dfrac{3}{5}=9\left(cm\right)\)
ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AB=\sqrt{15^2-9^2}=12\left(cm\right)\)
Tam giác `ABC` vuông tại `A`
`=> AC = BC . sinB = 15 . 3/5 = 9 (cm)`
Và `AB =` \(\sqrt{BC^2-AC^2}=\sqrt{15^2-9^2}=\sqrt{144}=12\) `(cm)`
Xét ΔABC vuông tại A có \(tanB=\dfrac{AC}{AB}\)
=>\(\dfrac{AC}{AB}=\sqrt{3}\)
=>\(\dfrac{AC^2}{AB^2}=3\)
=>\(AC^3=3AB^2\)
ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(4\cdot AB^2=2^2=4\)
=>\(AB^2=1\)
=>AB=1(cm)
=>\(AC=1\cdot\sqrt{3}=\sqrt{3}\left(cm\right)\)
a: Xét (O) có
ΔCMD nội tiếp
CD là đường kính
Do đó:ΔCMD vuông tại M
=>DM\(\perp\)CF tại M
b: Xét (O) có AB,CD là các đường kính và AB\(\perp\)CD tại O
nên \(sđ\stackrel\frown{CA}=sđ\stackrel\frown{CB}=sđ\stackrel\frown{AD}=sđ\stackrel\frown{BD}\)
Xét (O) có \(\widehat{MNB}\) là góc có đỉnh ở bên trong đường tròn chắn hai cung MB,AD
=>\(\widehat{MNB}=\dfrac{1}{2}\left(sđ\stackrel\frown{MB}+sđ\stackrel\frown{AD}\right)=\dfrac{1}{2}\left(sđ\stackrel\frown{MB}+sđ\stackrel\frown{BD}\right)=\dfrac{1}{2}\cdot sđ\stackrel\frown{MD}\)
Xét (O) có
\(\widehat{DME}\) là góc tạo bởi tiếp tuyến ME và dây cung MD
=>\(\widehat{DME}=\dfrac{1}{2}\cdot sđ\stackrel\frown{MD}\)
=>\(\widehat{DME}=\widehat{MNB}\)
=>ΔENM cân tại E
Ta có: \(\widehat{EMN}+\widehat{EMF}=\widehat{FMN}=90^0\)
\(\widehat{ENM}+\widehat{EFM}=90^0\)(ΔNMF vuông tại M)
mà \(\widehat{ENM}=\widehat{EMN}\)
nên \(\widehat{EMF}=\widehat{EFM}\)
=>ΔEFM cân tại E
a: Xét ΔBHA vuông tại H và ΔBAC vuông tại A có
\(\widehat{HBA}\) chung
Do đó: ΔBHA~ΔBAC
=>\(\dfrac{BH}{BA}=\dfrac{BA}{BC}\)
=>\(BH\cdot BC=BA^2\)
b: Xét ΔAHB vuông tại H có HD là đường cao
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HE là đường cao
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1),(2) suy ra \(AD\cdot AB=AE\cdot AC\)
=>\(\dfrac{AD}{AC}=\dfrac{AE}{AB}\)
Xét ΔADE vuông tại A và ΔACB vuông tại A có
\(\dfrac{AD}{AC}=\dfrac{AE}{AB}\)
Do đó: ΔADE~ΔACB
cho,a≠b≠c (a+b+c)2=a2+b2+c2
c/m \(\dfrac{a^2}{a^2+2bc}+\dfrac{b^2}{b^2+2ac}+\dfrac{c^2}{c^2+2ab}\)=1
từ (a+b+c)^2=a^2+b^2+c^2
suy ra ab+bc+ac=0suy ra ab=-(bc+ac);ac=-(ab+bc);bc=-(ab+ac)
xét a^2+2bc=a^2+bc-ab-ac=(a-c)(a-b)
tương tự dc b^2+2ac=(b-a)(b-c)
c^2+2ab=(a-c)(b-c)
thay vao điều phải c/m dc
a^2/(a-c)(a-b) -b^2/(a-b)(b-c) +c^2(a-c)(b-c)
=a^2b-a^2c-b^2a+b^2c+c^2a-bc^2/(a-b)(a-c)(b-c)
=abc(ac-bc+bc-ab+ab-ac)/(a-b)(a-c)(b-c)=0
Xét tam giác ABC vuông tại A
a, Theo Pytago ta có \(c=\sqrt{a^2-b^2}=3\sqrt{13}\)
sinB = AC/BC = 18/21 = 6/7 => ^B = \(\approx\)590
Do ^B ; ^C phụ nhau => ^C \(\approx\)310
b, Do ^B ; ^C phụ nhau => ^B = 600
tanC = AB/AC = c/b => c = b.tanC = \(\dfrac{10\sqrt{3}}{3}\)
cosC = AC/BC = b/a => a = b/cosC = \(\dfrac{20\sqrt{3}}{3}\)
c, Theo Pytago \(a=\sqrt{b^2+c^2}=\sqrt{34}\)
tanB = AC/AB => ^B \(\approx\)310
Do ^B ; ^C phụ nhau ^C \(\approx\)590
a) Ta có:
\(sin54^o=\dfrac{y}{3}=>y=3\cdot sin54^o\approx2,4\left(cm\right)\\ =>x=\sqrt{3^2-y^2}=\sqrt{9-2,4^2}\approx1,8\left(cm\right)\)
b) Ta có:
\(sin32^o=\dfrac{1,5}{y}=>y=\dfrac{1,5}{sin32^o}\approx2,8\left(cm\right)\\ =>x=\sqrt{y^2-1,5^2}=\sqrt{2,8^2-1,5^2}\approx2,4\)
c) Ta có:
\(tan70^o=\dfrac{y}{0,8}=>y=0,8\cdot tan70^o\approx2,2\left(cm\right)\\ =>x=\sqrt{y^2+0,8^2}=\sqrt{2,2^2+0,8^2}\approx2,3\left(cm\right)\)
Cho tam giác ABC vuông tại A, ^B là góc biết số đo
a, sinB = y/3 => y \(\approx\)2,42 cm
cosB = x/3 => y \(\approx\)1,76 cm
b, sinB = 1,5/y => y = 1,5/sinB \(\approx\)2,83 cm
tanB = 1,5/x => x = 1,5/tanB => x \(\approx\)2,4 cm
c, tanB = y/0,8 => y = 0,8.tanB => y \(\approx\)2,19 cm
cosB = 0,8/x => x = 0,8/cosB => x \(\approx\)2,34 cm