K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2020

Mục tiêu -500 sp mong giúp đỡ

12 tháng 4 2020

Cho \(\Delta ABC\)có AB = 8, BC = 17 , AC = 15. Số đo góc A = ?

Theo định lí Pytago, nếu AB2 + AC2 = BC2 thì tam giác đó là tam giác vuông

Thay AB = 8, BC = 17, AC = 15 ta có

AB2 + AC2 = 82 + 152 = 289

BC2 = 172 = 289

=> 82 + 152 = 172 

=> AB2 + AC2 = BC2 ( Đ/lí Pytago )  

=> \(\Delta ABC\)là tam giác vuông tại A

=> \(\widehat{A}=90^0\)

12 tháng 4 2020

Tam giác ABC có :

8²+15²=289; 17²=289

=>AB² +AC²=BC²=>tam giác ABC vuông tại A 

(đ/l pytago đảo) 

=>Â =90°

Câu 1Làm lạnh đẳng tích một khối khí từ nhiệt độ 1270C và áp suất 2atm đến nhiệt độ 570C. Tính áp suất của khí sau khi làm lạnh và vẽ đồ thị biểu diễn sự biến đổi trạng thái của khí trong hệ tọa độ (p, T).Câu 2Biết thể tích của một khối lượng khí không đổi. Chất khí ở nhiệt độ 200C có áp suất p1. Phải đun nóng chất khí lên nhiệt độ bao nhiêu để áp suất tăng lên 3...
Đọc tiếp

Câu 1

Làm lạnh đẳng tích một khối khí từ nhiệt độ 1270C và áp suất 2atm đến nhiệt độ 570C. Tính áp suất của khí sau khi làm lạnh và vẽ đồ thị biểu diễn sự biến đổi trạng thái của khí trong hệ tọa độ (p, T).

Câu 2

Biết thể tích của một khối lượng khí không đổi. Chất khí ở nhiệt độ 200C có áp suất p1. Phải đun nóng chất khí lên nhiệt độ bao nhiêu để áp suất tăng lên 3 lần?

Câu 3

Một bình thép chứa khí ở 70C dưới áp suất 4atm. Nhiệt độ của khí trong bình là bao nhiêu khi áp suất khí tăng thêm 0,5atm?

Câu 4

Đun nóng đẳng tích một lượng khí lên 2500C thì áp suất tăng thêm 12,5% so với áp suất ban đầu. Tìm nhiệt độ ban đầu của khối khí.

Câu 5

Một ống thuỷ tinh dài, tiết diện đều và nhỏ, có chứa một cột không khí, ngăn cách với khí quyển bên ngoài bởi cột thuỷ ngân dài l = 5cm. Chiều dài của cột không khí khi ống nằm ngang là l0 = 12cm . Hãy tính chiều dài của cột không khí trong các trường hợp sau:

a) Ống thẳng đứng, miệng ống ở trên .

b) Ống thẳng đứng, miệng ống ở dưới .

Biết áp suất khí quyển là p0 = 750mmHg và coi nhiệt độ là không đổi.

1
19 tháng 4 2020

3.)\(\frac{P_1}{T_1}=\frac{P_2}{T_2}\)

\(\Rightarrow\)\(T_2=\frac{T_1.P_2}{P_1}\)\(=\frac{280.4,5}{4}\)\(=315K\)

P/s:#Học Tốt#

Câu 1Nén khí đẳng nhiệt từ thể tích 10 lít đến thể tích 4 lít thì áp suất của khí tăng lên bao nhiêu lần ?Câu 2Một khối khí có áp suất 1,5 atm và thể tích 5 lít được biến đổi đẳng nhiệt đến áp suất 4atm. Tính thể tích khí sau khi biến đổi và vẽ đồ thị biểu diễn trong hệ toạ độ (p, V).Câu 3Nén đẳng nhiệt một khối khí từ thể tích 9 lít đến thể tích 6 lít thì áp suất của...
Đọc tiếp

Câu 1

Nén khí đẳng nhiệt từ thể tích 10 lít đến thể tích 4 lít thì áp suất của khí tăng lên bao nhiêu lần ?

Câu 2

Một khối khí có áp suất 1,5 atm và thể tích 5 lít được biến đổi đẳng nhiệt đến áp suất 4atm. Tính thể tích khí sau khi biến đổi và vẽ đồ thị biểu diễn trong hệ toạ độ (p, V).

Câu 3

Nén đẳng nhiệt một khối khí từ thể tích 9 lít đến thể tích 6 lít thì áp suất của khí tăng thêm một lượng 5.104Pa. Tính áp suất của khí trước và sau khi nén. 

Câu 4

Một lượng khí lí tưởng ở nhiệt độ 170C và áp suất 1,5 atm được nung nóng đẳng tích đến áp suất 2,5atm. Tính nhiệt độ của khí sau khi nung và vẽ đồ thị biểu diễn sự biến đổi trạng thái trong hệ (p-T).

Câu 5

Một khối khí ở nhiệt độ 170C áp suất 1,5 atm được nung nóng đẳng tích đến 1170C thì áp suất của khí đó là bao nhiêu? Vẽ đồ thị biểu diễn sự biến đổi trạng thái của khí trong hệ toạ độ (p, T).

1
12 tháng 4 2020

Câu 1 : Thể tích giảm đi 10/4 = 2,5 lần nên áp suất tăng 2,5 lần

16 tháng 4 2020

-3x+7=y

16 tháng 4 2020

y=-3x-5, nhầm

11 tháng 4 2020

Bài 1:

H1;H2 lần lượt là trực tâm tam giác OAB, OCD và \(\widehat{AOB}=\widehat{COD}\)(đối đỉnh)

=> \(\frac{OH_1}{OH_2}=\frac{AB}{CD}\)

Gọi M,N,K lần lượt là trung điểm của các đoạn thẳng AD, BC, BD

Vì G1;G2 lần lượt là trọng tâm của các tam giác OAD; OBC. Nên \(\frac{OG_1}{OM}=\frac{2}{3};\frac{OG_2}{ON}=\frac{2}{3}\)

\(\Delta\)OMN có: \(\frac{OG_1}{OM}=\frac{OG_2}{ON}\left(=\frac{2}{3}\right)\)=> G1G2 // MN và \(G_1G_2=\frac{2}{3}MN\)

\(OH_1\perp MK,OH_2\perp NK,MK=\frac{AB}{2},NK=\frac{CD}{2}\)

Do đó: \(\widehat{H_1OH_2}=\widehat{MKN},\frac{OH_1}{MK}=\frac{OH_2}{NK}\). Nên \(\Delta\)OH1H2 đồng dạng với \(\Delta\)KMN (cgc)

=> \(H_1H_2\perp MN\)Mà G1G2 // MN

Nên \(H_1H_2\perp G_1G_2\)=> \(S=\frac{1}{2}H_1H_2\cdot G_1G_2\)

Áp dụng BĐT Cosi cho 2 số dương ta có:
\(S=\frac{1}{2}H_1H_2\cdot G_1G_2=\frac{3G_1G_2\cdot H_1H_2}{6}\le\frac{\left(3G_1G_2+H_1H_2\right)^2}{24}\)

Dấu "=" <=> \(3G_1G_2=H_1H_2\Leftrightarrow OH_1=AB\)và \(OH_2=CD\)

\(\Leftrightarrow\widehat{AOB}=\widehat{COD}=45^o\)

11 tháng 4 2020

Bài 2: *có nhiều cách làm bài này, mỗi cách có 1 hình khác nhau, đang lỗi nên không vẽ được hình*

Cách 1: Ta có: \(\widehat{BAC}=90^o\)(Góc nội tiếp chắn nửa đường tròn)

Đặt BH=x, ta có HC=HB-BH=2R-x

\(\Delta\)ABC vuông tại A, AH là đường cao

=> AH2=BH.HC. Nên \(AH=\sqrt{x\left(2R-x\right)}\)

Áp dụng BĐT Cosi cho 2 số dương, ta có: AH+BH=\(\sqrt{x\left(2R-x\right)+x}=\frac{1}{\sqrt{3+2\sqrt{2}}}\sqrt{x\left[\left(3+2\sqrt{2}\right)\left(2R-x\right)\right]}+x\)

\(\le\frac{1}{\sqrt{\left(\sqrt{2}+1\right)^2}}\cdot\frac{a+\left(3+2\sqrt{2}\right)\left(2R-x\right)}{2}+x\)\(=\frac{1}{\sqrt{2}+1}\left[\frac{x}{2}\left(\sqrt{2}+1\right)^2\cdot R-\frac{\left(\sqrt{2}+1\right)^2\cdot x}{2}\right]+x\)

\(=\frac{\sqrt{2}-1}{2}\cdot x+\left(\sqrt{2}+1\right)R-\frac{\sqrt{2}+1}{2}x+x=\left(\sqrt{2}+1\right)R\)

Ta có AB+AH \(\le\left(\sqrt{2}+1\right)R\)không đổi

Dấu "=" xảy ra <=> \(x=\left(3+2\sqrt{2}\right)\left(2R-x\right)\)

\(\Leftrightarrow x=\frac{2+\sqrt{2}}{2}R\)

\(\Leftrightarrow\widehat{AOC}=45^o\)

Cách 2: Gọi M là điểm trên nửa đường tròn (O) sao cho \(\widehat{COM}=45^o\) và gọi N là giao của nửa đường tròn (O) tại M với BC
Ta có: M,N cố định; \(\widehat{ONM}=45^o\), BN không đổi

Điểm A trên đường tròn (O) 

Do đó tia NA nằm giữa 2 tia NB và NM

\(\Rightarrow\widehat{ANH}\le\widehat{ONM}=45^o\). Mà \(\widehat{ANH}+\widehat{HAN}=90^o\), Nên \(\widehat{HAN}\ge45^o\)

=> \(\widehat{ANH}\le\widehat{HAN},\)\(\Delta\)AHN có: \(\widehat{ANH}\le\widehat{HAN}\Rightarrow AH\le HN\)

Do đó: AH+BH \(\le\)HN+BH=BN, không đổi

Dấu "=" xảy ra <=> A = M

Vậy khi A trên nửa đường tròn (O) sao cho \(\widehat{COA}=45^o\) thì AH+BH lớn nhất

10 tháng 4 2020

\(\frac{2x-5}{\left|x-5\right|}+1\ge0\)

\(\Leftrightarrow\frac{2x-5}{\left|x-5\right|}\ge-1\)

\(\Leftrightarrow2x-5\le-\left|x-5\right|\)

\(\Leftrightarrow\left(2x-5\right)^2\le\left(-\left|x-5\right|\right)^2\)

\(\Leftrightarrow4x^2-20x+25\le x^2-10x+25\)

\(\Leftrightarrow3x^2-10x\le0\)

\(\Leftrightarrow x\left(3x-10\right)\le0\)

Làm nốt