Cho a,b,c là sô khác nhau
CMR:\(\frac{a+b}{a-b}\cdot\frac{b+c}{b-c}+\frac{b+c}{b-c}\cdot\frac{c+a}{c-a}+\frac{c+a}{c-a}\cdot\frac{a+b}{a-b}=-1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\)\(\sqrt{\left(x-1\right)\left(x-3\right)}\)
\(đkxđ\Leftrightarrow\left(x-1\right)\left(x-3\right)\ge0\)
\(\orbr{\begin{cases}x-1\ge0;x-3\ge0\\x-1< 0;x-3< 0\end{cases}\Rightarrow\orbr{\begin{cases}x\ge1;x\ge3\\x< 1;x< 3\end{cases}\Rightarrow}\orbr{\begin{cases}x\ge3\\x< 1\end{cases}}}\)
\(b,\)\(\sqrt{\frac{4}{x+3}}\)
\(đkxđ\Leftrightarrow\orbr{\begin{cases}x+3\ne0\\x+3\ge0\end{cases}\Rightarrow x+3>0}\)\(\Rightarrow x>-3\)
\(\sqrt{x^2-3x+2}=\sqrt{2}\)
\(\Rightarrow x^2-3x+2=2\)
\(\Rightarrow x^2-3x=0\)
\(\Rightarrow x=0;x=3\)
\(3\sqrt{x}=15\)
\(\Leftrightarrow\sqrt{x}=5\)
\(\Leftrightarrow x=5^2\)
\(\Leftrightarrow x=25\)
Vậy x = 25
\(3\sqrt{x}=15\)
\(\Leftrightarrow\sqrt{x}=5\)
\(\Leftrightarrow x=5^2\)
\(\Leftrightarrow x=25\)
\(k\)\(nha\)
a,b, tự làm nha
c, y= ax + b (d' )
d // d' \(\Leftrightarrow\)\(\hept{\begin{cases}a=1\\b\ne2\end{cases}}\)
\(\Rightarrow\)d' : y=x + b
thay x= 2 vào P ta đc
y=4
\(\Rightarrow\)điểm (2,4)
mà d' cắt P tại điểm có hđ = 2
\(\Rightarrow\)đ (2;4) \(\in\)d'
thay x=2, y=4 vào d' ta đc
4 = 2 + b
b= 2 ( ko tm)
\(\Rightarrow\)d' : y=x
#mã mã#
PT
<=> \(x^2+x-3+\left(2x+1\right)\left(3-\sqrt{x^2+x+6}\right)=0\)
<=> \(x^2+x-3+\left(2x+1\right).\frac{-x^2-x+3}{3+\sqrt{x^2+x+6}}=0\)
<=> \(\orbr{\begin{cases}x^2+x-3=0\left(1\right)\\1-\frac{2x+1}{3+\sqrt{x^2+x+6}}=0\left(2\right)\end{cases}}\)
Giải (2)
\(2x-2=\sqrt{x^2+x+6}\)
<=> \(3x^2-9x-2=0\)với \(x\ge1\)
=> \(x=\frac{9+\sqrt{105}}{6}\)
Giải (1)
=> \(x=\frac{-1\pm\sqrt{13}}{2}\)
Vậy \(S=\left\{\frac{-1\pm\sqrt{13}}{2},\frac{9+\sqrt{105}}{6}\right\}\)
ĐKXĐ \(x\ge3\)
Đặt \(\sqrt{2x+3}+\sqrt{x-3}=t\left(t\ge0\right)\)
=> \(t^2=3x+2\sqrt{2x^2-3x-9}\left(1\right)\)
Khi đó Pt
<=> \(t=t^2-6\)
=> \(t^2-t-6=0\)
Mà \(t\ge0\)
=> \(t=3\)
(1) <=> \(9-3x=2\sqrt{2x^2-3x-9}\)
=> \(9-3x\ge0\Rightarrow x\le3\)
Kết hợp với ĐKXĐ
=> \(x=3\)
Vậy x=3
ĐKXĐ \(2x^2-1\ge0\)
PT <=> \(10x^2+3x-6=2\left(3x+1\right)\sqrt{2x^2-1}\)
<=> \(\left(3x+1\right)\left(x+2-2\sqrt{2x^2-1}\right)+7x^2-4x-8=0\)
<=> \(\left(3x+1\right).\frac{\left(x+2\right)^2-4\left(2x^2-1\right)}{x+2+2\sqrt{2x^2-1}}+7x^2-4x-8=0\)
<=> \(\left(3x+1\right).\frac{-7x^2+4x+8}{x+2+2\sqrt{2x^2-1}}+7x^2-4x-8=0\)
<=> \(\orbr{\begin{cases}-7x^2+4x+8=0\left(1\right)\\3x+1=x+2+2\sqrt{2x^2-1}\left(2\right)\end{cases}}\)
Giải (2)
\(2x-1=2\sqrt{2x^2-1}\)
<=> \(4x^2+4x-5=0\)với \(x\ge\frac{1}{2}\)
=> \(x=\frac{-1+\sqrt{6}}{2}\)
GIải (1)
\(x=\frac{2\pm2\sqrt{15}}{7}\)thỏa mãn ĐKXĐ
Vậy \(S=\left\{\frac{2\pm2\sqrt{15}}{7},\frac{-1+\sqrt{6}}{2}\right\}\)
ĐKXĐ \(x\ge\frac{1}{2}\)
Đặt \(\sqrt{x^2+2x}=a,\sqrt{2x-1}=b\left(a,b\ge0\right)\)
=> \(3a^2-b^2=3x^2+4x+1\)
Khi đó PT <=>
\(a+b=\sqrt{3a^2-b^2}\)
=> \(a^2+2ab+b^2=3a^2-b^2\)
=> \(a^2-ab-b^2=0\)
=> \(a=\frac{1+\sqrt{5}}{2}.b\)
=> \(x^2+2x=\frac{6+2\sqrt{5}}{4}.\left(2x-1\right)\)
=> \(x=\frac{1+\sqrt{5}}{2}\)thỏa mãn ĐKXĐ
Vậy \(x=\frac{1+\sqrt{5}}{2}\)
\(\frac{a+b}{a-b}.\frac{b+c}{b-c}+\frac{b+c}{b-c}.\frac{c+a}{c-a}+\frac{c+a}{c-a}.\frac{a+b}{a-b}\)
\(=\frac{\left(a+b\right)\left(b+c\right)}{\left(a-b\right)\left(b-c\right)}+\frac{\left(b+c\right)\left(c+a\right)}{\left(b-c\right)\left(c-a\right)}+\frac{\left(c+a\right)\left(a+b\right)}{\left(c-a\right)\left(a-b\right)}\)
\(=\frac{\left(a+b\right)\left(b+c\right)\left(c-a\right)+\left(b+c\right)\left(c+a\right)\left(a-b\right)+\left(c+a\right)\left(a+b\right)\left(b-c\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
.............