tinh S hinh tron ngoai tiep tam giac can ABC, biet goc A = 120o, AB = AC = 4cm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+9=0\)
\(\Leftrightarrow x^2=-9\)(vô lí)
Vậy \(x=\varnothing\)
\(\sin^4\alpha+\cos^4\alpha+2\sin^2\alpha.\cos^2\alpha=\left(\sin^2\alpha+\cos^2\alpha\right)^2=1\)
\(\tan^2\alpha\left(2.\cos^2\alpha+\sin^2\alpha-1\right)=\tan^2\alpha\left(\cos^2\alpha+\left(\sin^2\alpha+\cos^2\alpha\right)-1\right)\)\(=\tan^2\alpha.\cos^2\alpha=\left(\frac{1}{\cos^2\alpha}-1\right)\cos^2\alpha=1-\cos^2\alpha=\sin^2\alpha\)
gọi d=( n+1, 2n+1)
=> n+1 chia hết cho d=> 2n+2 chia hết cho d
=>2n+1 chia hết cho d=> 2n+1 chia hết cho d
=> ( 2n+2)-( 2n+1) chia hết cho d
=> 1 chia hết cho d
=> d= -1 hoặc +1
=> phân số n+1/2n+1 là phân số tối giản
b, giải
Gọi d là \(UCLN\left(n+1,n+2\right)\)
\(\Rightarrow\orbr{\begin{cases}n+1⋮d\\n+2⋮d\end{cases}}\)
\(\Rightarrow\left(n+1\right)-\left(n+2\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\Rightarrow UCLN\left(n+1,n+2\right)=1\)
\(\Rightarrow\frac{n+1}{n+2}\) là phân số tối giản (ĐPCM)
\(ab+b\sqrt{a}+\sqrt{a}+1\)
(đk: \(a\ge0\))
\(=b\sqrt{a}\left(\sqrt{a}+1\right)+\sqrt{a}+1=\left(\sqrt{a}+1\right)\left(b\sqrt{a}+1\right)\)
ĐK: \(x,y\ge0\)
\(\sqrt{x^3}-\sqrt{y^3}+\sqrt{x^2y}-\sqrt{xy^2}=x\left(\sqrt{x}+\sqrt{y}\right)-y\left(\sqrt{x}+\sqrt{y}\right)=\left(\sqrt{x}+\sqrt{y}\right)\left(x-y\right)\)
\(=\left(\sqrt{x}+\sqrt{y}\right)^2\left(\sqrt{x}-\sqrt{y}\right)\)
\(\left(\sqrt{\frac{1}{4}\cdot\frac{1}{2}}-\frac{3}{2}\sqrt{2}+\frac{4}{5}\cdot10\sqrt{2}\right):\frac{1}{8}\)
\(=\left(\sqrt{\frac{1}{4}\cdot\frac{1\cdot2}{2\cdot2}}-\frac{3}{2}\sqrt{2}+\frac{4}{5}\cdot10\sqrt{2}\right):\frac{1}{8}\)
\(=\left(\sqrt{\frac{1}{4}\cdot\frac{2}{4}}-\frac{3}{2}\sqrt{2}+8\sqrt{2}\right):\frac{1}{8}\)
\(=\left(\sqrt{\frac{2}{16}}-\frac{3}{2}\sqrt{2}+8\sqrt{2}\right):\frac{1}{8}\)
\(=\left(\frac{1}{4}\sqrt{2}-\frac{3}{2}\sqrt{2}+8\sqrt{2}\right):\frac{1}{8}\)
\(=\sqrt{2}\left(\frac{1}{4}-\frac{3}{2}+8\right):\frac{1}{8}\)
\(=\sqrt{2}\left(\frac{1}{4}-\frac{6}{4}+\frac{32}{4}\right):\frac{1}{8}\)
\(=\sqrt{2}\cdot\frac{27}{4}:\frac{1}{8}\)
\(=\frac{27\sqrt{2}}{4}\cdot\frac{8}{1}\)
\(=2\cdot27\sqrt{2}=54\sqrt{2}\)
\(\Rightarrow\left(\sqrt{\frac{1}{4}\cdot\frac{1}{2}}-\frac{3}{2}\sqrt{2}+\frac{4}{5}\cdot10\sqrt{2}\right):\frac{1}{8}=54\sqrt{2}\)
\(\left(\frac{1}{4}\sqrt{2}-\frac{3}{2}\sqrt{2}+\frac{4}{5}.10\sqrt{2}\right):\frac{1}{8}\)
=\(\sqrt{2}\)(1/4-3/2+8):1/8
=\(\sqrt{2}\).27/4.8
=54\(\sqrt{2}\)
Sửa đề lại cho đúng nhé :
\(\sqrt{12x^2-17x+5}=\sqrt{12x^2-12x-5x+5}\)
\(=\)\(\sqrt{12x\left(x-1\right)-5\left(x-1\right)}=\sqrt{\left(x-1\right)\left(12x-5\right)}\)
\(btxđ\Leftrightarrow\left(x-1\right)\left(12x-5\right)\ge0\)
\(\Rightarrow\orbr{\begin{cases}x-1\ge0;12x-5\ge0\\x-1< 0;12x-5< 0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x\ge1;x\le\frac{12}{5}\left(tm\right)\\x< 1;x>\frac{12}{5}\left(ktm\right)\end{cases}}\)
\(\Rightarrow1\le x\le\frac{12}{5}\)
Anh ơi mik mấy bài toán khó như thế này mik tham khảo trên H.vn nhé
Toán lớp 9 của bn hơi khó , có gì bn lên lazi,vn hoặc hoc.24.vn để hỏi nha
~ Hok tốt ~
#Smash
Tam giác ABC cân ở A, có góc A = 120o nên góc ACB = 30o
\(\widehat{AOB}=2\widehat{ACB}\)= 2.30o = 60o
Tam giác AOB đều nên OA = AB = 4 (cm)
S(O) = \(\pi.OA^2=\pi.4^2=16\pi\)
\(\approx3,14.16\approx50,24\)(cm2)