K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2019

B/sung đề a,b >1 vì nếu ko \(C=-\infty\)

Đặt \(a-1=x,b-1=y\left(x,y>0\right)\)

\(C=\frac{\left(y+1\right)^2}{x}+\frac{\left(x+1\right)^2}{y}=\left(\frac{y^2}{x}+\frac{x^2}{y}+\frac{1}{x}+\frac{1}{y}\right)+2\left(\frac{y}{x}+\frac{x}{y}\right)\ge4+2=6\)(bđt cauchy)

Min C=6 <=> x=y=1<=>a=b=2

23 tháng 6 2019

Sr: \(C\ge4+2.2=8\)

Min C=8 nhé

23 tháng 6 2019

a) \(2\sqrt{2}+6=\sqrt{8}+6< \sqrt{9}+6=3+6=9\)

Vậy \(2\sqrt{2}+6< 9\)

b) \(\left(\sqrt{2}+\sqrt{3}\right)^2=2+2\sqrt{6}+3=2+\sqrt{24}+3>5+4=9=3^2\)

Vậy \(\sqrt{3}+\sqrt{2}>3\)

23 tháng 6 2019

\(\left(-4\right)^2>3^2\Rightarrow-4>3\) à kiệt

23 tháng 6 2019

\(B=\frac{2\sqrt{2}}{1+\sqrt{2}-\sqrt{3}}=\frac{2\sqrt{2}\left(1+\sqrt{2}+\sqrt{3}\right)}{\left(1+\sqrt{2}-\sqrt{3}\right)\left(1+\sqrt{2}+\sqrt{3}\right)}.\)\(=\frac{2\sqrt{2}\left(1+\sqrt{2}+\sqrt{3}\right)}{\left(1+\sqrt{2}\right)^2-3}=1+\sqrt{2}+\sqrt{3}\)

\(A=\sqrt{11+\sqrt{96}}=\sqrt{11+4\sqrt{6}}=\sqrt{8+2.2\sqrt{2}.\sqrt{3}+3}=\sqrt{\left(2\sqrt{2}+\sqrt{3}\right)^2}\)\(=2\sqrt{2}+\sqrt{3}>1+\sqrt{2}+\sqrt{3}=B\)

23 tháng 6 2019

\(N=99...9400...09=99...9.10^{12}+4.10^{11}+9=\left(10^{10}-1\right)10^{12}+4.10^{11}+9\)\(=10^{22}+4.10^{11}-10^{12}+9=10^{22}-6.10^{11}+9=\left(10^{11}-3\right)^2\)

\(\Rightarrow\sqrt{N}=10^{11}-3\)

23 tháng 6 2019

N=99..94×10..0+9 ( 10 số 9 và 11 số 0)

N = (99..97-3) (99..7+13)+9

N=99..97 ^2. (10 số 9)

Vậy √N =99..97 (10 số 9)

23 tháng 6 2019

\(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\sqrt{\frac{1}{a^2}+\left(\frac{1}{b}+\frac{1}{c}\right)^2-\frac{2}{bc}}=\sqrt{\frac{1}{a^2}+\left(\frac{b+c}{bc}\right)^2-\frac{2}{bc}.}\)

\(=\sqrt{\frac{1}{a^2}+\frac{a^2}{b^2c^2}-\frac{2}{bc}}=\sqrt{\left(\frac{1}{a}-\frac{a}{bc}\right)^2}\)\(=\left|\frac{1}{a}-\frac{a}{bc}\right|\)

Do a,b,c là các số hữu tỉ => đpcm

23 tháng 6 2019

Ta có 

\(\frac{1}{a^2\:}+\frac{1}{b^2}+\frac{1}{c^2}=\left(\frac{1}{a}-\frac{1}{b\:}-\frac{1}{c}\right)^2\)2.    + \(2\left(\frac{1}{ab}+\frac{1}{ac}-\frac{1}{bc}\right)\)

\(=\left(\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right)^2\)\(2.\frac{c+b-a}{abc}\)\(=\left(\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right)^2\)(Vì a=b+c)

Từ đó suy ra 

\(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}\)\(=\sqrt{\left(\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right)^2}\)\(=|\frac{1}{a}-\frac{1}{b}-\frac{1}{c}|\)Vì a,b,c là số hữu tỉ khác 0 nên \(|\frac{1}{a}-\frac{1}{b}-\frac{1}{c}|\)là một số hữu tỉ

=> đpcm

23 tháng 6 2019

\(\sqrt{x}=x\) nếu \(x=0\)hoặc \(x=1\)

\(\sqrt{x}< x\)nếu \(x>0\)

23 tháng 6 2019

Giải

Vì x\(\ge\)0 nên √x \(\ge\)0

Từ đó ta có 3 trường hợp

 √x=x \(\Leftrightarrow\)x=x^2 \(\Leftrightarrow\)x-x^2 =0   <=>  x(1-x)=0  <=> x=0 hoặc x=1

√x< x   <=>.x<x^ 2.   <=>.  x-x^2 < 0  <=>.  x(1-x) <  0 <=> x>1

√x>x.  <=> x>x^2.  <=> x-x^2 > 0.  <=> x(1- x) >0. <=> 0<x<1

Vậy nếu x=0 hoặc x=1 thì √x=x

Nếu x>1 thì √x<x

Nếu 0<x<1 thì √x>x 

Mình biết mình viết khá là khó hiểu nên có gì thắc mắc bạn hãy nhắn tin cho mk nha ﹋o﹋

\(\frac{\sqrt{2x-3}}{\sqrt{x-1}}=2\)

\(\Leftrightarrow\sqrt{2x-3}=2\sqrt{x-1}\left(x\ne\frac{3}{2};x\ne1\right)\)

\(\Leftrightarrow\left(\sqrt{2x-3}\right)^2=\left(2\sqrt{x-1}\right)^2\)

\(\Leftrightarrow2x-3=4\left(x-1\right)\)

\(\Leftrightarrow2x-3=4x-4\)

\(\Leftrightarrow4x-2x=-3+4\)

\(\Leftrightarrow2x=1\Leftrightarrow x=\frac{1}{2}\)( thỏa mãn )

Không biết có sai đâu k nữa....bn nhớ xem lại nhá

22 tháng 6 2019

\(\frac{\sqrt{2x-1}}{\sqrt{x-1}}=2\)

\(đkxđ\Leftrightarrow\)\(\hept{\begin{cases}2x-1\ge0\\x-1\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\ge\frac{1}{2}\\x\ge1\end{cases}\Rightarrow}x\ge1}\)

Mà \(\sqrt{x-1}\ne0\Rightarrow x-1\ne0\Rightarrow x\ne1\)

\(\Rightarrowđkxđ\)của đa thức là \(x>1\)

\(\frac{\sqrt{2x-1}}{\sqrt{x-1}}=2\)\(\Rightarrow\left(\frac{\sqrt{2x-1}}{\sqrt{x-1}}\right)^2=4\)

\(\Rightarrow\frac{|2x-1|}{|x-1|}=4\)

......

22 tháng 6 2019

\(a,\sqrt{52}.\sqrt{13}=\sqrt{2^2.13}.\sqrt{13}\)

\(=2\sqrt{13}.\sqrt{13}=2.13=26\)

\(b,\sqrt{146,5^2-109,5^2}+27.256\)

\(=\sqrt{\left(146,6-109,5\right)\left(146,5+109,5\right)}+27.256\)

\(=\sqrt{37.256}+27.256\)

\(=\sqrt{4^2.37}+27.16=4\sqrt{37}+4.4.27\)

\(=4\left(\sqrt{37}+108\right)\)