https://olm.vn/hoi-dap/detail/243567031023.html
giải ra dùm mình với !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
( 2m + n ) . ( m + 2n ) = 2m . m + n . m + 2m . 2n + n . 2n
= 2m2 + mn + 4mn + 2n2
= 2 ( m2 + n2 ) + 5mn
Vì m2 + n2 chia hết cho 5 => 2 ( m2 + n2 ) chia hết cho 5 và 5mn chia hết cho 5
=> 2 ( m2 + n2 ) + 5mn chia hết cho 5
=> (2m + n ) ( m + 2n ) chia hết cho 5
=> Tồn tại ít nhất 1 trong hai số 2m + n hoặc m + 2n chia hết cho 5.
a) Ta có ^A=1/2^ABC nên ^A=60o=>t/gABD đều
=>^D1=^D2=60o
=>^ABD=^HBK=60o=>^B1=^B2
Xét t/gABH và t/gDBK ta có:
AB=BD
^B1=^B2
^A=^D2
=>t/gABD=^DBK(g-c-g)
=>AH=DK mà AD=DC nên
=>HD=KC
=>DH+DK=AD (không đổi)
=>đpcm.
b)Có BH=BK
Lại có: ^HBK=60o=>t/gHBK đều
=>HK nhỏ nhất <=> BH nhỏ nhất
<=>BH_|_AD=>H là trung điểm AD khi đó K cũng là trung điểm của DC
Áp dujnh định lý pi-ta-go ta có:BH2=AB2-AH2=22-12=3=>BH=\(\sqrt{3}\)
Vậy H và K để HK ngắn nhất: \(\sqrt{3}\)
\(x^3-3xy\left(x-y\right)-y^3-x^2+2xy+2018-y^2\)
\(=\left(x^3-y^3\right)-3xy.10-\left(x^2-2xy+y^2\right)+2018\)
\(=\left(x-y\right)\left(x^2+xy+y^2\right)-30xy-\left(x-y\right)^2+2018\)
\(=10\left(x^2+xy+y^2\right)-30xy-10^2+2018\)
\(=10x^2+10xy+10y^2-30xy-100+2018\)
\(=10x^2-20xy+10y^2+1918\)
\(=10\left(x^2-2xy+y^2\right)+1918=10\left(x-y\right)^2+1918=2918\)
\(x^3-3xy\left(x-y\right)-y^3-x^2+2xy+2018-y^2\)
\(=\left(x^3-y^3\right)-3xy\left(x-y\right)-\left(x^2-2xy+y^2\right)+2018\)
\(=\left(x-y\right)^3+3xy\left(x-y\right)-3xy\left(x-y\right)-\left(x-y\right)^2+2018\)
\(=\left(x-y\right)^3-\left(x-y\right)^2+2018\)
Với \(x-y=10\)thì giá trị của biểu thức là : \(10^3-10^2+2018=2918\)
a)\(\left(4x^3-xy^2+y^3\right)\left(x^2y+2xy^2-2y^3\right)\)
\(=x^2y\left(4x^3-xy^2+y^3\right)+2xy^2\left(4x^3-xy^2+y^3\right)\)
\(-2y^3\left(4x^3-xy^2+y^3\right)\)
\(=4x^5y-x^3y^3+x^2y^4+8x^4y^2-2x^2y^4+2xy^5\)
\(-8x^3y^3+2xy^5-2y^6\)
\(=-2y^6+4x^5y+\left(2xy^5+2xy^5\right)+8x^4y^2+\left(x^2y^4-2x^2y^4\right)\)
\(-\left(x^3y^3+8x^3y^3\right)\)
\(=-2y^6+4x^5y+4xy^5+8x^4y^2-x^2y^4-9x^3y^3\)
b)
(!) \(2\left(x+y\right)^2-7\left(x+y\right)+5\)
\(=2\left(x+y\right)^2-2\left(x+y\right)-5\left(x+y\right)+5\)
\(=2\left(x+y\right)\left(x+y-1\right)-5\left(x+y-1\right)\)
\(=\left(2x+2y-5\right)\left(x+y-1\right)\)
(!!) \(\left(x+y+z\right)^2-x^2-y^2-z^2\)
\(=\left(x^2+y^2+z^2+2xy+2yz+2zx\right)-x^2-y^2-z^2\)
\(=2\left(xy+yz+zx\right)\)