Cho a,b,c>0 và a^2 + b^2 + c^2 = 3. CMR a/b + b/c + c/a >= 9/a+b+c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK: \(-1\le x\le1\)\(;\)\(x\ne0\)
\(\frac{\sqrt{1+x}+\sqrt{1-x}}{\sqrt{1+x}-\sqrt{1-x}}=\sqrt{2}\)
\(\Leftrightarrow\)\(\frac{\left(\sqrt{1+x}+\sqrt{1-x}\right)^2}{\left(\sqrt{1+x}-\sqrt{1-x}\right)\left(\sqrt{1+x}+\sqrt{1-x}\right)}=\sqrt{2}\)
\(\Leftrightarrow\)\(\frac{1+x+1-x+2\sqrt{\left(1+x\right)\left(1-x\right)}}{1+x-1+x}=\sqrt{2}\)
\(\Leftrightarrow\)\(\sqrt{1-x^2}=\sqrt{2}x-1\)
\(\Leftrightarrow\)\(1-x^2=2x^2-2\sqrt{2}x+1\)
\(\Leftrightarrow\)\(x^2-\frac{2\sqrt{2}}{3}x=0\)
\(\Leftrightarrow\)\(x\left(x-\frac{2\sqrt{2}}{3}\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\left(l\right)\\x=\frac{2\sqrt{2}}{3}\left(tm\right)\end{cases}}\)
\(\frac{x-1}{x+1}=\frac{\frac{2\sqrt{2}}{3}-1}{\frac{2\sqrt{2}}{3}+1}=\frac{\frac{2\sqrt{2}-3}{3}}{\frac{2\sqrt{2}+3}{3}}=\frac{2\sqrt{2}-3}{2\sqrt{2}+3}=12\sqrt{2}-17\) ( giống như tìm x ở trên )