1, tính
a,\(\sqrt{2}+\sqrt{7-2\sqrt{10}}\)
b,\(1-\sqrt{7+2\sqrt{6}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,\(x\sqrt{y}+y\sqrt{x}=\sqrt{x}\sqrt{y}.\left(\sqrt{x}+\sqrt{y}\right).\)
c,\(\sqrt{a}-a^2=\sqrt{a}.\left(1-a\sqrt{a}\right)\)
d,\(x-5\sqrt{x}+6=x-3\sqrt{x}-2\sqrt{x}+6\)
\(=\sqrt{x}.\left(\sqrt{x}-3\right)-2.\left(\sqrt{x}-3\right)\)\(=\left(\sqrt{x}-3\right).\left(\sqrt{x}-2\right)\)
\(vt=\sqrt{-\left(x-2\right)^2+2}+\sqrt{-2\left(x-2\right)^2+3}\)
=>\(VT=< \sqrt{2}+\sqrt{3}\)
xảy ra dấu = khi và chỉ khi x=2
\(a,\)\(\left(\sqrt{7}-\sqrt{5}+\sqrt{2}\right)\left(\sqrt{2}-\sqrt{7}-\sqrt{5}\right)\)
\(=\left[\left(\sqrt{2}-\sqrt{5}\right)+\sqrt{7}\right]\left[\left(\sqrt{2}-\sqrt{5}\right)-\sqrt{7}\right]\)
\(=\left(\sqrt{2}-\sqrt{5}\right)^2-\sqrt{7^2}\)
\(=2-2\sqrt{10}-5-7\)
\(=-10-2\sqrt{10}\)
\(b,B=\sqrt{2}.\sqrt{2+\sqrt{3}}\)
\(\Rightarrow B^2=|2|.|2+\sqrt{3}|\)
\(=2.\left(2+\sqrt{3}\right)\)
\(=4+2\sqrt{3}\)
\(=3+2\sqrt{3}+1\)
\(=\sqrt{3}^2+2\sqrt{3}+\sqrt{1}^2\)
\(=\left(\sqrt{3}+\sqrt{1}\right)^2\)
\(\Rightarrow B=\sqrt{3}+\sqrt{1}=\sqrt{3}+1\)
a, \(\sqrt{2}\)+ \(\sqrt{7-2\sqrt{10}}\)= \(\sqrt{2}\)+ \(\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}\)
= \(\sqrt{2}\)+ \(\sqrt{5}\)- \(\sqrt{2}\)
= \(\sqrt{5}\)
b, 1 - \(\sqrt{7+2\sqrt{6}}\)= 1- \(\sqrt{\left(\sqrt{6}+1\right)}\)= 1 - \(\sqrt{6}\)- 1 = \(\sqrt{6}\)
#mã mã#