Cho hcn ABCD. Trên các cạnh AB, BC, CD, DA lần lượt lấy các điểm E, F, G, H sao cho AE/AB=AH/AD=CF/CB=CG/CD
a)cm/ tú giác EFGH là hbh
b)cm/ hbh EFGH có chu vi ko đổi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = x2 - 6x + 6
= x2 - 2.x.3 + 32 - 3
=(x - 3)2 - 3
Ta có: \(\left(x-3\right)^2\ge0\forall x\)=> (x - 3)2 - 3 < 0 =>A < 0 =>A không là số chính phương(vì số chính phương luôn lớnhơnhoặc bằng0)
=> \(x\in\varnothing\)
Vậy không có số nguyên tố x nào thỏa mãn đề bài
A là số chính phương, suy ra
\(x^2-6x+6=k^2\) \(\left(k\inℕ\right)\)
\(\Leftrightarrow\left(x-3\right)^2-3=k^2\Leftrightarrow\left(x-3\right)^2-k^2=3\Leftrightarrow\left(x-3-k\right)\left(x-3+k\right)=3\)
Vì \(x;k\inℕ\Rightarrow x-3-k< x-3+k\)nên ta có các trường hợp sau
\(\hept{\begin{cases}x-3-k=1\\x-3+k=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=5\left(tm\right)\\k=1\end{cases}}\)
\(\hept{\begin{cases}x-3-k=-3\\x-3+k=-1\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\left(ktm\right)\\k=1\end{cases}}}\)
Vậy x=5 thì giá trị biểu thức A là số chính phương
bạn gửi lại link vào chỗ tin nhắn của mk đc ko. THANKS!!!
\(\left(x-2\right)\left(5x+3\right)=\left(3x-8\right)\left(x-2\right)\)
\(x-2.5x+3=3x-8.x-2\)
\(x-10x+3=-5x-2\)
\(x-10x+5x=-2-3\)
\(-4x=-5\)
\(x=\frac{5}{4}\)
(x-2)(5x+3)=(3x-8)(x-2) (*)
Với \(x=2\) thì thỏa mãn phương trình (*)
Với \(x\ne2\), chia hai vế phương trình (*) cho (x-2), ta được
\(5x+3=3x-8\Leftrightarrow2x=-11\Leftrightarrow x=-\frac{11}{2}\left(tm\right)\)
Vậy tập nghiệm phương trình đã cho: \(S=\left\{2;-\frac{11}{2}\right\}\)
a) Xét tam giác ADB có:
\(\frac{AE}{AB}=\frac{AH}{AD}\left(gt\right)\)
\(\Rightarrow HE//DB\left(1\right)\)( định lý Ta-let đảo )
Xét tam giác CDB có:
\(\frac{CF}{CB}=\frac{CG}{CD}\left(gt\right)\)
\(\Rightarrow GF//BD\left(2\right)\)
Từ (1) và (2) \(\Rightarrow HE//GF\)
CMTT\(HG//EF\)( cùng // AC)
Xét tứ giác EFGH có:
\(\hept{\begin{cases}HE//GF\left(cmt\right)\\HG//EF\left(cmt\right)\end{cases}\Rightarrow EFGH}\)là hình bình hành (dhnb)
b)
Đặt\(\frac{AE}{AB}=\frac{AH}{AD}=\frac{CF}{CB}=\frac{CG}{CD}=k\)
Xét tam giác ADB có:
\(HE//BD\left(gt\right)\)
\(\Rightarrow\frac{HE}{BD}=\frac{AE}{AB}\)( hệ quả của định lý Ta-let)
\(\Rightarrow\frac{HE}{BD}=k\)( vì \(\frac{AE}{AB}=k\))
\(\Rightarrow HE=k.BD\)
Xét tam giác ABC có:
\(EF//AC\left(cmt\right)\)
\(\Rightarrow\frac{EF}{AC}=\frac{BE}{BA}\)( hệ quả của định lý Ta-let)
\(\Rightarrow\frac{EF}{AC}=\frac{AB-AE}{BA}=1-k\)
\(\Rightarrow EF=\left(1-k\right)AC\)
\(P_{EFGH}=2\left(HE+EF\right)\)
\(=2\left[k.BD+\left(1-k\right)AC\right]\)
\(=2AC\)không đổi ( AC=BD do ABCD là hình chữ nhật )
Vậy chu vi của hbh EFGH có giá trị không đổi
bạn bảo châu ơi