Chứng minh rằng : 3x+1 + 3x+2 +3x+3 +...+3x+11+ 3x+12 chia hết cho 39 ,x là số tự nhiên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. $(d)$ cắt trục tung tại điểm có tung độ $3$, tức là cắt trục tung tại điểm $(0;3)$
$(0;3)\in (d)$
$\Leftrightarrow 3=(m+2).0+2m^2+1$
$\Leftrightarrow 2m^2=2$
$\Leftrightarrow m^2=1$
$\Leftrightarrow m=\pm 1$
Khi $m=1$ thì ta có hàm số $y=3x+3$
Khi $m=-1$ thì ta có hàm số $y=x+3$
Bạn có thể tự vẽ 2 đths này.
b.
Để $(d)$ cắt $(d')$ thì: $m+2\neq 2m+2$
$\Leftrightarrow m\neq 0$
Đặt tổng là A = 1 + 2 + 2^2 + 2^3 + ... + 2^2002 = 1 + 2 + B
Kể từ số hạng 2^2 đến 2^2002 có 2001 số hạng mà nhóm ba số hạng liên tiếp ta được một số chia hết cho 7
Do đó B = 2^2 + 2^3 + 2^4 + ... + 2^2000 + 2^2001 + 2^2002
= 2^2 (1 + 2 + 2^2) + ... + 2^2000 (1 + 2 + 2^2)
= 2^2. 7 + 2^5 . 7 + ... + 2^2000. 7
=> B chia hết cho 7
Vậy A = 3 + B
nên A chia 7 dư 3
Lời giải:
b/
\(\sqrt{52-16\sqrt{3}}+\sqrt{(4\sqrt{3}-7)^2}=\sqrt{48+4-2\sqrt{48.4}}+|4\sqrt{3}-7|\)
\(=\sqrt{(4\sqrt{3}-2)^2}+|4\sqrt{3}-7|\\ =|4\sqrt{3}-2|+|4\sqrt{3}-7|\\ =4\sqrt{3}-2+7-4\sqrt{3}=5\)
c/
\(=\frac{\sqrt{10}+3}{(\sqrt{10}-3)(\sqrt{10}+3)}-\frac{\sqrt{10}(\sqrt{5}+\sqrt{2})}{\sqrt{5}+\sqrt{2}}\\ =\sqrt{10}+3-\sqrt{10}=3\)
Lời giải:
$p>3$ và $p$ nguyên tố nên $p$ lẻ
$\Rightarrow p+1$ chẵn $\Rightarrow p+1\vdots 2(1)$
Mặt khác:
$p>3$ và $p$ nguyên tố nên $p$ không chia hết cho $3$
$\Rightarrow p=3k+1$ hoặc $p=3k+2$ với $k$ tự nhiên.
Nếu $p=3k+1$ thì $2p+1=2(3k+1)+1=3(2k+1)\vdots 3$. Mà $2p+1>3$ nên không thể là số nguyên tố (trái đề bài)
$\Rightarrow p=3k+2$
Khi đó:
$p+1=3k+3\vdots 3(2)$
Từ $(1); (2)$, mà $(2,3)=1$ nên $p+1\vdots (2.3)$ hay $p+1\vdots 6$
Bạn Hà gấp 6 chiếc thuyền hết 5 phút 30 giây.Hỏi trung bình mỗi chiếc bạn hà gấp hết bao nhiêu giây?
Đổi 5 phút 30 giây = 330 giây
Trung bình mỗi chiếc bạn Hà gấp hết số giây là: 330 : 6 = 55(giây)
Đ/số: 55 giây
Đổi 5 phút = 300 giây
Bạn Hà gấp 6 chiếc thuyền trong số giây là :
Gọi tập hợp số nguyên cần tìm trên là A:
A = {-7;-6;-5;-4;-3;-2;-1;0;1;2;3;4;5;6;7}
A = -7 + (-6) + (-5) + (-4) + (-3) + (-2) + (-1) + 0 + 1 + 2 + 3 + 4 + 5 + 6 + 7
A = [-7 + 7] + [(-6) + 6] + [(-5) + 5] + [(-4) + 4] + [(-3) + 3] + [(-2) + 2] + [(-1) + 1] + 0
A = 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0
A = 0
\(=3^{x+1}\left(1+3+3^2\right)+...+3^{x+10}\left(1+3+3^2\right)=\)
\(=3^x.3.13+...+3^{x+9}.3.13=\)
\(39\left(3^x+...+3^{x+9}\right)⋮39\)