Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
dựng hình bình hành ABFC như hình vẽ.
ta chứng minh \(\Delta AFC=\Delta EDA\)
ta có: AE=CA
CF=AB=DA
\(\widehat{FCA}=\widehat{DAE}\)( do cùng cộng với góc \(\widehat{BAC}=180^0\))
Vậy \(\Delta AFC=\Delta EDA\)(c.g.c)
\(\Rightarrow\widehat{A_1}=\widehat{AED}\)(hai góc tương ứng)
mà \(\widehat{A_1}+\widehat{A_2}=90^0\Rightarrow\widehat{A_2}+\widehat{AED}=90^0\)\(\Rightarrow AM\)vuông góc với DE
Ta có : \(\frac{a}{b+c+d}=\frac{b}{c+d+a}=\frac{c}{d+a+b}=\frac{d}{a+b+c}\)
=> \(\frac{a}{b+c+d}+1=\frac{b}{c+d+a}+1=\frac{c}{d+a+b}+1=\frac{d}{a+b+c}+1\)
=> \(\frac{a+b+c+d}{b+c+d}=\frac{a+b+c+d}{a+c+d}=\frac{a+b+c+d}{a+b+d}=\frac{a+b+c+d}{a+b+c}\)
Nếu a + b + c + d = 0
=> a + b = -(c + d)
b + c = -(a + d)
Khi đó P = \(\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{b+c}=\frac{-\left(c+d\right)}{c+d}+\frac{-\left(d+a\right)}{d+a}+\frac{c+d}{-\left(c+d\right)}+\frac{d+a}{-\left(b+c\right)}\)
= -1 + (-1) + (-1) + (-1) = -4
Khi a + b + c + d \(\ne0\)
=> \(\frac{1}{a}=\frac{1}{b}=\frac{1}{c}=\frac{1}{d}\Rightarrow a=b=c=d\)
Khi đó P = \(\frac{a+b}{c+d}+\frac{b+c}{a+d}+\frac{c+d}{b+a}+\frac{d+a}{b+c}=\frac{2b}{2b}+\frac{2c}{2c}+\frac{2d}{2d}+\frac{2a}{2a}=1+1+1+1=4\)
b) Vì \(\left|x+\frac{1}{1.2}\right|\ge0;\left|x+\frac{1}{2.3}\right|0\ge;...\left|x+\frac{99}{100}\right|\ge0\)
=> 100x \(\ge0\Rightarrow x\ge0\)
=> \(x+\frac{1}{2}\ge0;y+\frac{1}{2.3}\ge0;...;x+\frac{99}{100}\ge0\)
Khi đó \(\left|x+\frac{1}{1.2}\right|+\left|x+\frac{1}{3.4}\right|+...+\left|x+\frac{1}{99.100}\right|=100x\)
<=> \(x+\frac{1}{1.2}+x.\frac{1}{2.3}+...+x+\frac{1}{99.100}=100x\)(99 số hạng)
=> \(99x+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}=100x\)
=> \(x=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}=\frac{99}{100}\)
ta có \(\frac{x-2}{3}=\frac{y-1}{2}=\frac{z-3}{4}\)
áp dụng tính chất của dãy tỉ số bằng nhau ta có
\(\frac{x-2}{3}=\frac{y-1}{2}=\frac{z-3}{4}=\frac{x-2+y-1+z-3}{3+2+4}=\frac{x+y+z-6}{9}=1\)
vì vậy \(\frac{x-2}{3}=\frac{y-1}{2}=\frac{z-3}{4}=1\Leftrightarrow\hept{\begin{cases}x=5\\y=3\\z=7\end{cases}}\)