cho tam giác ABC có trực tâm H.
1. chứng minh: AB2+HC2=AC2+HB2=BC2+HA2
2.gọi S là diện tích tam giác ABC. chứng minh:
AB.HC+BC.HA+CA.HB=4S
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Ta có:
góc AMB=90o (góc nội tiếp chắn nửa đtròn) hay AMH=90o
góc HCA=90o (gt)
⇒AMB+ACH=180o
⇒Tứ giác AMHC nội tiếp đtròn đkính AH
b) ΔOAM đều (vì OA=AM=MA=R) ⇒góc A=60o
Ta có: BMI=A(=1/2 sđMB) hay HMI=A
MHI=A (tứ giác AMHC nt)
Suy ra: HMI=MHI=A=60o
⇒ΔMIH đều
\(\frac{\sin^4\alpha-\cos^2\alpha+2\cos^4\alpha-\cos^6\alpha}{\cos^4\alpha-\sin^2\alpha+2\sin^4\alpha-\sin^6\alpha}=\frac{\sin^4\alpha-\cos^2\alpha\left(1-\cos^2\alpha\right)^2}{\cos^4\alpha-\sin^2\alpha\left(1-\sin^2\alpha\right)^2}\)
\(=\tan^4\alpha.\frac{1-\cos^2\alpha}{1-\sin^2\alpha}=\tan^6\alpha\)
Gợi ý này: Đặt \(a=x^3,b=y^3,c=z^3\) rồi áp dụng bất đẳng thức này \(x^3+y^3\ge xy\left(x+y\right)\) rồi biến đổi 1 chút nx là ra
Gọi AD, BE, CF là ba đường cao của tam giác ABC cắt nhau tại H
1. Theo định lý Pythagoras, ta có: \(AB^2+HC^2=\left(AD^2+DB^2\right)+\left(HD^2+DC^2\right)=\left(AD^2+DC^2\right)+\left(DB^2+HD^2\right)=AC^2+HB^2\)(1)
\(BC^2+HA^2=\left(BE^2+EC^2\right)+\left(AE^2+HE^2\right)=\left(BE^2+AE^2\right)+\left(EC^2+HE^2\right)=AB^2+HC^2\)(2)
Từ (1) và (2) suy ra \(AB^2+HC^2=AC^2+HB^2=BC^2+HA^2\)(đpcm)
2. Ta có: \(BC.HA=BC.AD-BC.HD=2S-2S_{BHC}\)
Tương tự: \(AB.HC=2S-2S_{AHB}\); \(CA.HB=2S-2S_{AHC}\)
Suy ra \(AB.HC+BC.HA+CA.HB=6S-2S=4S\)(đpcm)