Hòa tan hoàn toàn 2.98g hỗn hợp X gồm Fe , Zn vào lượng dư chứa 500g dd H2so4 loãng thấy thoát ra 1.12 lít khí (đktc) và dd A. (a) tính phần trăm khối lượng mỗi kim loại trong hỗn hợp X (b) tính nồng độ % ban đầu của dd H2So4 biết rằng để trung hòa lượng ãit dư trong dd A cần 100ml dd KOH 1M . (c) tính nồng đọ % các chất có trong dd A
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK: a,b>0 , a khác b
\(A=\left[\frac{\sqrt{a}-\sqrt{b}}{\sqrt{b}}.\frac{\sqrt{a}+\sqrt{b}}{\sqrt{b}}\right]:\left(\frac{a^2-b^2}{ab}\right)\)
\(=\frac{a-b}{b}:\frac{\left(a-b\right)\left(a+b\right)}{ab}=\frac{a-b}{b}.\frac{ab}{\left(a-b\right)\left(a+b\right)}=\frac{a}{a+b}\)
Với b=1, A=2 ta có:
\(\frac{a}{a+1}=2\Leftrightarrow a=2a+2\Leftrightarrow a=-2\) loại
vậy không tồn tại a để A=2 b=1
\(A=\left[\left(\sqrt{\frac{a}{b}}-1\right).\left(\sqrt{\frac{a}{b}}+1\right)\right]:\left(\frac{a}{b}-\frac{b}{a}\right)\)
\(A=\left[\left(\sqrt{\frac{a}{b}}\right)^2-1\right]:\left(\frac{a^2}{ab}-\frac{b^2}{ab}\right)\)
\(A=\left(\frac{a}{b}-1\right):\left[\frac{\left(a-b\right)\left(a+b\right)}{ab}\right]\)
\(A=\left(\frac{a-b}{b}\right).\left[\frac{ab}{\left(a-b\right)\left(a+b\right)}\right]\)
\(A=\frac{a}{a+b}\)
\(E=\sqrt{x+4\sqrt{x-2}+2}+\sqrt{x-4\sqrt{x-2}+2}\)
\(=\sqrt{x-2+4\sqrt{x-2}+4}+\sqrt{x-2-4\sqrt{x-2}+4}\)
\(=\sqrt{\left(\sqrt{x-2}+2\right)^2}+\sqrt{\left(\sqrt{x-2}-2\right)^2}\)
\(=|\sqrt{x-2}+2|+|\sqrt{x-2}-2|\)
\(...\)
Ta có
\(10^2=6^2+8^2\)
\(\Rightarrow ab^2=ac^2+bc^2\)
Định lý pitago đảo
\(\Rightarrow\Delta abc\perp a\)
Gọi O là tâm đường tròn bàng tiếp trong góc A.Ta có:
\(S_{OAC}+S_{OAB}-S_{OBC}=S_{ABC}\Rightarrow b.r_a+c.r_a-a.r_a=2S\Rightarrow S=\frac{r_a\left(b+c-a\right)}{2}=r_a\left(p-a\right).\)(p là nửa chu vi tam giác ABC)
Cm tương tự: \(S=r_a\left(p-a\right)=r_b\left(p-b\right)=r_c\left(p-c\right)=p.r\)
\(\Rightarrow\frac{S}{r_a}+\frac{S}{r_b}+\frac{S}{r_c}=p-a+p-b+p-c=3p-2p=p=\frac{S}{r}\Rightarrow\frac{1}{r}=\frac{1}{r_a}+\frac{1}{r_b}+\frac{1}{r_c}\)(đpcm)
Đặt BC=a, AC=b, AB=c
\(P=\frac{a+b+c}{2}\)
S là diện tích của tam giác ABC
Ta có công thức tính bán kính của các đường tròn bàng tiếp:
Tại góc A: \(r_a=\frac{S}{P-a}\)
Tại góc B: \(r_b=\frac{S}{P-b}\)
Tại góc C: \(r_c=\frac{S}{P-c}\)
Công thức tính bán kính đường tròn nội tiếp tam giác ABC:
\(r=\frac{S}{P}\)
=> \(\frac{1}{r_a}+\frac{1}{r_b}+\frac{1}{r_c}=\frac{P-a}{S}+\frac{P-b}{S}+\frac{P-c}{S}=\frac{3P}{S}-\frac{a+b+c}{S}\)
\(=\frac{3P}{S}-\frac{2P}{S}=\frac{P}{S}=\frac{1}{r}\)
Gọi I là tâm đường tròn bàng tiếp góc A của tam giác ABC
Ta có:
SABC=SABI+SACI−SBIC
=Rb/2 + Rc/2 − Ra/ 2
=R. (b+c−a/2)
=R(p−a)
=> R = S/(p-a) (đpcm)
Ta có \(n^2+\left(n+1\right)^2>2n\left(n+1\right)\)
=>\(\frac{1}{n^2+\left(n+1\right)^2}< \frac{1}{2}\left(\frac{1}{n\left(n+1\right)}\right)=\frac{1}{2}\left(\frac{1}{n}-\frac{1}{n+1}\right)\)
Áp dụng ta có \(\frac{1}{5}=\frac{1}{1^2+2^2}< \frac{1}{2}\left(\frac{1}{1}-\frac{1}{2}\right)\)
\(\frac{1}{13}=\frac{1}{2^2+3^2}< \frac{1}{2}\left(\frac{1}{2}-\frac{1}{3}\right)\)
..................................................................
\(\frac{1}{2019^2+2020^2}< \frac{1}{2}\left(\frac{1}{2019}-\frac{1}{2020}\right)\)
=> \(VT< \frac{1}{2}\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...+\frac{1}{2019}-\frac{1}{2020}\right)=\frac{1}{2}\left(1-\frac{1}{2020}\right)< \frac{1}{2}\)(ĐPCM)