phân tích đa thúc thành nhân tử: ax -bx -a^2 +2ab -b^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/
Ta có
BE=DF (cạnh đối hbh)
BE=CF (gt)
=> CF=DF => tg CDF cân tại F
Ta có
DF//BE => DF//AB mà \(AB\perp AC\Rightarrow DF\perp AC\)
=> tg CDF vuông cân tại F \(\Rightarrow\widehat{FCD}=\widehat{FDC}=45^o\)
Tg ABC vuông cân tại A \(\Rightarrow\widehat{ABC}=\widehat{ACB}=45^o\)
\(\widehat{BCD}=\widehat{ACF}-\left(\widehat{ACB}+\widehat{FCD}\right)=180^o-\left(45^o+45^o\right)=90^o\)
\(\Rightarrow DC\perp BC\) (đpcm)
b/
Từ E dựng đường thẳng vuông góc với AB cắt BC tại K
Xét tg vuông BEK có
\(\widehat{BKE}=180^o-\left(\widehat{BEK}+\widehat{ABC}\right)=180^o-\left(90^o+45^o\right)=45^o\)
\(\Rightarrow\widehat{ABC}=\widehat{BKE}=45^o\) => tg BEK cân tại E => BE=KE
Mà BE=CF (gt)
=> KE=CF (1)
Ta có
\(KE\perp AB\)
\(AC\perp AB\Rightarrow CF\perp AB\)
=> KE//CF (2)
Từ (1) và (2) => CEKF là hình bình hành (Tứ giác có 1 cặp cạnh đối // và bằng nhau là hbh)
=> IE=IF (trong hbh hai đường chéo cắt nhau tại trung điểm mỗi đường)
Xét tg vuông AEF có
IE=IF (cmt) \(\Rightarrow AI=\dfrac{1}{2}EF\) (trong tg vuông trung tuyến thuộc cạnh huyền bằng nửa cạnh huyền)
Mà EF=DB (cạnh đối hbh)
\(\Rightarrow AI=\dfrac{1}{2}DB\) (đpcm)
c/ Gọi N là giao của MI với AF
Xét tg vuông CIN có
\(\widehat{CIN}=180^o-\left(\widehat{ACB}+\widehat{MNF}\right)=180^o-\left(45^o+90^o\right)=45^o\)
\(\Rightarrow\widehat{CIN}=\widehat{ACB}=45^o\) => tg CIN cân tại N => NI=NC (3)
\(MI\perp AF;DF\perp AF\) => MI//DF
BD//EF (cạnh đối hbh) => MD//IF
=> DFIM là hbh (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh) => MI=DF
Mà DF=CF (cmt)
=> MI=CF (4)
Xét tg MNF
Từ (3) và (4) \(\Rightarrow\dfrac{NI}{NC}=\dfrac{MI}{CF}=1\) => CI//MF (Talet đảo trong tam giác) (5)
Từ (4) và (5) => MICF là hình thang cân
d/
Nối D với I, Giả sử A; I; D thẳng hàng
DF//BE (cạnh đối hbh) => DF//AB
\(AI=\dfrac{1}{2}EF\) (cmt) mà IE=IF => AI=IE=IF => tg AIE cân tại I
\(\Rightarrow\widehat{EAI}=\widehat{AEI}\) (6)
Mà \(\widehat{EAI}=\widehat{FDI};\widehat{AEI}=\widehat{DFI}\) (góc so le trong) (7)
Từ (6) và (7) \(\Rightarrow\widehat{FDI}=\widehat{DFI}\) => tg IDF cân tại I
=> ID=IF Mà AI=IE=IF => AI=IE=IF=ID
=> AEDF là hình bình hành (Tứ giác có hai đường chéo cắt nhau tại trung điểm mỗi đường là hbh)
Mà \(\widehat{A}=90^o\)
=> AEDF là hcn \(\Rightarrow DE\perp AB\) (8)
=> AD=EF (đường chéo HCN)
mà EF=BD (cạnh đối HCN)
=> AD=BD => tg ABD cân tại D (9)
Từ (8) và (9) => BE=AE (Trong tg cân đường cao hạ từ đỉnh tg cân đồng thời là đường trung tuyến)
=> E phải là trung điểm của AB thì A, I, D thẳng hàng
\(x^2-xy+x-y\)
\(=x\left(x-y\right)+\left(x-y\right)\)
\(=\left(x+1\right)\left(x-y\right)\)
\(x^2-xy+x-y\)
\(=x\left(x-y\right)+\left(x-y\right)\)
\(=\left(x+1\right)\left(x-y\right)\)
\(3\left(x+4\right)-x^2-4x\)
\(\Leftrightarrow3\left(x+4\right)-x\left(x+4\right)\)
\(\Leftrightarrow\left(3-x\right)\left(x+4\right)\)
`#040911`
Vì `3` số `x; y; z` tỉ lệ thuận với `4:7:10`
\(\Rightarrow \dfrac{x}{4} = \dfrac{y}{7} = \dfrac{z}{10} \)
\(\Rightarrow \dfrac{2x}{8} = \dfrac{3y}{21} = \dfrac{4z}{40} \)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{2x}{8} = \dfrac{3y}{21} = \dfrac{4z}{40} = \dfrac{2x + 3y + 4z}{8+21+40} = \dfrac{69}{69}=1\)
\(\Rightarrow \dfrac{x}{4} = \dfrac{y}{7} = \dfrac{z}{10} = 1\)
\(\Rightarrow x = 1.4 = 4 \\ y = 1.7 = 7 \\ z = 1.10 = 10\)
Vậy, \(x = 4; y = 7; z = 10.\)
2) \(x^4-5x^2+4\)
\(=x^4-x^2-4x^2+4\)
\(=x^2\left(x^2-1\right)-4\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left(x^2-4\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)\)
= ( 7x2 + 14xy + y2 ) - 1
= ( 7x + y )2 - 1
= [(7x + y) + 1] [( 7x + y) - 1]
49.x^2 - 1 + 14xy + y^2
= (49.x^2 + 14xy + y^2) - 1
= (7x + y)^2 - 1
= (7x + y + 1)(7x + y - 1)
\(=\left(x-y\right)\left(x+y\right)-10\left(x+y\right)=\)
\(=\left(x+y\right)\left(x-y-10\right)\)
= (x - y). (x + y) - 10 ( x - y)
= [( x + y) - 10)] . ( x - y)
\(=x\left(a-b\right)-\left(a^2-2ab+b^2\right)=\)
\(=\left(a-b\right)x-\left(a-b\right)^2=\)
\(=\left(a-b\right)\left[x-\left(a-b\right)\right]=\left(a-b\right)\left(x-a+b\right)\)