Cho hai số nguyên dương x, y thỏa mãn x 2 +y 2 +2x(y−1) +2y+1 là số chính phương. Chứng minh rằng x = y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để \(P\left(x\right)=x^4+ax+b⋮x^2-1\) thì \(P\left(x\right)=\left(x^2-1\right)Q\left(x\right)=\left(x-1\right)\left(x+1\right)Q\left(x\right)\) với \(Q\left(x\right)\) là đa thức có bậc là 2.
Suy ra \(P\left(-1\right)=P\left(1\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(-1\right)^4+a.\left(-1\right)^3+b=0\\1^4+a.1^3+b=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b-a=-1\\a+b=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=0\\b=-1\end{matrix}\right.\)
Với \(\left(a,b\right)=\left(0;-1\right)\) thì \(P\left(x\right)=x^4-1=\left(x^2-1\right)\left(x^2+1\right)\) thỏa mãn ycbt. Vậy \(\left(a,b\right)=\left(0;-1\right)\)
Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn nhé.
a) \(x^2+2x+1=\left(x+1\right)^2\)
b) \(x^2+8x+16=\left(x+4\right)^2\)
c) \(x^2+6x+9=\left(x+3\right)^2\)
d) \(4x^2+4x+1=\left(2x+1\right)^2\)
e) \(36+x^2-12x=x^2-12x+36=\left(x-6\right)^2\)
f) \(4x^2+12x+9=\left(2x+3\right)^2\)
g) \(x^4+81+18x^2=x^4+18x^2+81=\left(x^2+9\right)^2\)
h) \(9x^2+30xy+25y^2=\left(3x+5y\right)^2\)
a, \(x^2\) + 2\(x\) + 1 = (\(x\) + 1)2
b, \(x^2\) + 8\(x\) + 16 = (\(x\) + 4)2
c, \(x^2\) + 6\(x\) + 9 = (\(x\) + 3)2
d, 4\(x^2\) + 4\(x\) + 1 = (2\(x\) + 1)2
nếu mua 1 cái số tiền phải trả là:
190000−190000×30%=133000(đồng)190000-190000×30%=133000(đồ��)
nếu mua cái thứ 2 thì số tiền phải trả là:
`190 000 - 190 000 × (30%+5%)=123 500 (đồng)
tổng số tiền phải trả là:
133000+123500=256500đồng133000+123500=256500đồ��
vì mẹ cho 260k260� nên và còn dư
\(\left(2x-1\right)\left(y-7\right)=22\)
\(\Rightarrow\left(2x-1\right);\left(y-7\right)\in\left\{1;2;11;22\right\}\)
\(\Rightarrow\left(x;y\right)\in\left\{\left(1;29\right);\left(\dfrac{3}{2};18\right);\left(6;9\right);\left(\dfrac{23}{2};8\right)\right\}\)
\(\Rightarrow\left(x;y\right)\in\left\{\left(1;29\right);\left(6;9\right)\right\}\left(x;y\inℤ^+\right)\)
\(\dfrac{1}{4\cdot7}+\dfrac{1}{7\cdot10}+...+\dfrac{1}{61\cdot64}\)
\(=\left(\dfrac{3}{4\cdot7}+\dfrac{3}{7\cdot10}+...+\dfrac{3}{61\cdot64}\right):3\)
\(=\left(\dfrac{7-4}{4\cdot7}+\dfrac{10-7}{7\cdot10}+...+\dfrac{64-61}{61\cdot64}\right):3\)
\(=\left(\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{61}-\dfrac{1}{64}\right):3\)
\(=\left(\dfrac{1}{4}-\dfrac{1}{64}\right):3\)
\(=\dfrac{15}{64}:3\)
\(=\dfrac{15}{192}=\dfrac{5}{64}\)
\(\dfrac{1}{12}=\dfrac{5}{60}\)
Vì \(64>60\) nên \(\dfrac{5}{64}< \dfrac{5}{60}\) hay \(\dfrac{1}{4\cdot7}+\dfrac{1}{7\cdot10}+...+\dfrac{1}{61\cdot64}< \dfrac{1}{12}\)
\(\dfrac{x}{3}=\dfrac{y}{4}\Leftrightarrow\dfrac{x^2}{9}=\dfrac{y^2}{16}\)
\(\dfrac{z}{5}=\dfrac{z^2}{25}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{x^2+y^2}{9+16}=\dfrac{x^2+y^2}{25}=\dfrac{225}{25}=9\)
\(\Rightarrow x=\sqrt{9\cdot9}=9\)
\(\Rightarrow y=\sqrt{9\cdot16}=12\)
\(\Rightarrow z=\sqrt{9\cdot25}=15\)
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}\)
\(\Rightarrow\dfrac{x^2}{9}=\dfrac{y^2}{16}=\dfrac{x^2+y^2}{9+16}=\dfrac{225}{25}=9\)
\(\Rightarrow\left\{{}\begin{matrix}x^2=9.9=81\\y^2=16.9=144\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=9\\y=12\end{matrix}\right.\)
\(\Rightarrow z=\dfrac{9}{3}.5=15\)
Vậy \(\left\{{}\begin{matrix}x=9\\y=12\\z=15\end{matrix}\right.\) thỏa đề bài
Xét \(P=x^2+y^2+2x\left(y-1\right)+2y+1\)
\(P=x^2+y^2+2xy-2x+2y+1\)
+) Nếu \(y>x\) thì \(2y-2x+1>0\). Do đó \(P>\left(x+y\right)^2\). Hơn nữa:
\(P< x^2+y^2+1+2xy+2x+2y\) \(=\left(x+y+1\right)^2\),
suy ra \(\left(x+y\right)^2< P< \left(x+y+1\right)^2\), vô lí vì P là SCP.
+) Nếu \(x>y\) thì \(2y-2x+1< 0\) nên \(P< \left(x+y\right)^2\)
Hơn nữa \(P>x^2+y^2+1+2xy-2x-2y\) \(=\left(x+y-1\right)^2\)
Suy ra \(\left(x+y-1\right)^2< P< \left(x+y\right)^2\), vô lí vì P là SCP.
Vậy \(x=y\) (đpcm)
(Cơ mà nếu thay \(x=y\) vào P thì \(P=4x^2+1\) lại không phải là SCP đâu)