Rút gọn :
a, căn x2(x-1)2 vs x<0
( có 1 dấu căn nhé)
b, căn 13x . căn 52/x vs x>0
c, 5xy . căn 25x2/y6 vs x<0 , y>0
d, căn 9+12x +4x2 / y2 vs x>-1,5 , y<0
( Phần tử số đến 4x2 nhé, dấu căn hết phần tử)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK : x>0, x khác 1
\(A=\left(\frac{1}{\sqrt{x}+1}+\frac{2\left(1-\sqrt{x}\right)}{x\left(\sqrt{x}+1\right)-\left(\sqrt{x}+1\right)}\right):\left(\frac{\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}-\frac{2}{x-1}\right)\)
\(=\left(\frac{1}{\sqrt{x}+1}-\frac{2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right):\left(\frac{1}{\sqrt{x}-1}-\frac{2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\)
\(=\frac{\sqrt{x}+1-2}{\left(\sqrt{x}+1\right)^2}:\frac{\sqrt{x}+1-2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}-1}{\left(\sqrt{x}+1\right)^2}.\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)
\(=\frac{\sqrt{x}-1}{\sqrt{x}+1}\)
Lời giải :
\(\sqrt{\frac{a}{b^3}+\frac{a}{b^4}}=\sqrt{\frac{ab+a}{b^4}}=\frac{\sqrt{ab+a}}{b^2}\)
\(A=\frac{\left(x+\sqrt{x^2-2x}\right)^2-\left(x-\sqrt{x^2-2x}\right)^2}{\left(x-\sqrt{x^2-2x}\right)\left(x+\sqrt{x^2-2x}\right)}\)
\(=\frac{2x\times2\sqrt{x^2-2x}}{2x}=2\sqrt{x^2-2x}\)
\(\sqrt{18\left(\sqrt{2}-\sqrt{3}\right)^2}=\sqrt{18}\left(\sqrt{2}-\sqrt{3}\right)\)
\(=\sqrt{36}-\sqrt{54}=6-3\sqrt{6}\)
Học tốt!!!!!!!!!!!!!!
Bài bạn ღ๖ۣۜLinh's ๖ۣۜLinh'sღ] ★we are one★ có vài chỗ sai xót cần sửa lại
Còn đây là cách của mình
Để A= \(\sqrt{\frac{2005}{x+y}}+\sqrt{\frac{2005}{y+z}}+\sqrt{\frac{2005}{x+z}}\)là số nguyên
thì đồng thời \(\sqrt{\frac{2005}{x+y}}\);\(\sqrt{\frac{2005}{y+z}}\);\(\sqrt{\frac{2005}{x+z}}\)là số hữu tỉ
Xét \(\sqrt{\frac{2005}{x+y}}\)là số hữu tỉ
+ \(2005⋮x+y\)
Do 2005 có duy nhất ước 1 là số chính phương
=> \(x+y=2005\)
Khi đó \(A=1+\sqrt{\frac{2005}{y+z}}+\sqrt{\frac{2005}{x+z}}\)là số chính phương khi \(\sqrt{\frac{2005}{y+z}}=\sqrt{\frac{2005}{x+z}}=1\)hoặc\(=\frac{1}{2}\)
=> \(x=y=\frac{2005}{2}\)loại
+ \(x+y⋮2005\)và \(x+y\ne2005\)
=> \(x+y=2005.k^2\)( \(k\inℕ^∗,k>1\))
Tương tự :\(y+z=2005.h^2\)
\(x+z=2005.g^2\)( \(h,g\inℕ^∗;h,g>1\)=> \(2\left(x+y+z\right)=2005\left(k+h+g\right)\)
=> \(A=\frac{1}{k}+\frac{1}{h}+\frac{1}{g}\)
Mà \(A\ge1\)
=> \(\frac{3}{2}\ge\frac{1}{k}+\frac{1}{h}+\frac{1}{g}\ge1\)
=> \(\frac{1}{k}+\frac{1}{h}+\frac{1}{g}=1\)
Giả sử \(k\ge h\ge g\)=> \(\frac{1}{k}\le\frac{1}{h}\le\frac{1}{g}\)
=> \(1\le\frac{3}{g}\)=> \(g\le3\)Mà g>1 => \(g\in\left\{2;3\right\}\)
Với \(g=2\)=> \(k+h\)chẵn => \(\frac{1}{k}+\frac{1}{h}=\frac{1}{2}\)=> \(\frac{h+k}{k.h}=\frac{1}{2}\)=> \(k.h\)chẵn => k ; h chẵn
\(\frac{1}{2}\le\frac{2}{h}\)=> \(h\le4\)=> \(h\in\left\{2;4\right\}\)
Thay vào ta được \(h=4;k=4\)
Khi đó \(\hept{\begin{cases}x+y=2005.4\\y+z=2005.16\\x+z=2005.16\end{cases}}\)= >\(\hept{\begin{cases}x=2005.2\\y=2005.2\\z=2005.14\end{cases}}\)
Vậy \(\left(x,y,z\right)=\left(2005.2;2005.2;2005.14\right)\)và các hoán vị
Để \(\sqrt{\frac{2005}{x+y}}+\sqrt{\frac{2005}{y+z}}+\sqrt{\frac{2005}{x+z}}\)là số nguyên thì
\(\hept{\begin{cases}\frac{2005}{x+y}\\\frac{2005}{y+z}\\\frac{2005}{x+z}\end{cases}}\)là bình phương của 1 số hữu tỉ
Gỉa sử đặt \(\frac{2005}{x+y}=\left(\frac{a}{b}\right)^2\Leftrightarrow\frac{a^2\left(x+y\right)}{b^2}=2005\)
\(\Rightarrow\orbr{\begin{cases}a^2⋮2005\\x+y⋮2005\end{cases}}\)
Xét \(a^2⋮2005\Rightarrow a^2=2005k\left(k\inℕ^∗\right)\)
\(\Rightarrow\frac{2005}{x+y}=\frac{2005k}{b^2}\)\(\Rightarrow b^2=\left(x+y\right)k\)
mà x,y nguyên dương=> x+y=k
\(\Rightarrow b^2⋮2005\)\(\Rightarrow x+y⋮2005\)\(\Rightarrow x+y=2005\)
Tương tự y+z=z+x=2005
Thay vào ta thấy không có giá trị x,y,z thỏa mãn đề bài
Xét \(x+y⋮2005\)
\(\Rightarrow\frac{2005}{x+y}=\frac{1}{h^2}\left(h\inℕ^∗\right)\)
Tương tự \(\frac{2005}{y+z}=\frac{1}{m^2},\frac{2005}{x+z}=\frac{1}{n^2}\left(m,n\inℕ^∗\right)\)
Để \(\sqrt{\frac{2005}{x+y}}+\sqrt{\frac{2005}{y+z}}+\sqrt{\frac{2005}{x+z}}\)là số nguyên thì
\(\frac{1}{h}+\frac{1}{m}+\frac{1}{n}⋮3\)
\(\Rightarrow2005⋮3\)(vô lí)
Vậy không có giá trị x,y,z nguyên dương thỏa mãn đề bài
P/s: Em không biết đúng không nữa, mong cô sửa hộ
\(a,\)\(7\sqrt{ab}+7b-\sqrt{a}-\sqrt{b}\)
\(=7\sqrt{b}\left(\sqrt{a}+\sqrt{b}\right)-\left(\sqrt{a}+\sqrt{b}\right)\)
\(=\left(\sqrt{a}+\sqrt{b}\right)\left(7\sqrt{b}-1\right)\)
\(b,a\sqrt{b}-b\sqrt{a}+\sqrt{a}-\sqrt{b}\)
\(=\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)+\left(\sqrt{a}-\sqrt{b}\right)\)
\(=\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{ab}-1\right)\)
\(c,\sqrt{x^2-25y^2}-\sqrt{x-5y}\)
\(=\sqrt{\left(x-5y\right)\left(x+5y\right)}-\sqrt{x-5y}\)
\(=\sqrt{x-5y}\left(\sqrt{x-5y}-1\right)\)
\(VT=\frac{a^4}{a^3b}+\frac{b^4}{b^3c}+\frac{c^4}{c^3a}\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^3b+b^3c+c^3a}\ge\frac{\left(a^2+b^2+c^2\right)^2}{\frac{1}{3}\left(a^2+b^2+c^2\right)^2}=3\)
\(VP=\frac{9}{a+b+c}=\frac{\left(a^2+b^2+c^2\right)^2}{a+b+c}\le a+b+c\le3\) ( \(3=a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)
\(\Leftrightarrow\)\(a+b+c\le3\) )
\(\Rightarrow\)\(VT\ge VP\) ( đpcm )
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=1\)
\(ĐK\sqrt{x-1}\ge0\Rightarrow x-1\ge0\Rightarrow x\ge1\)
Đặt \(\sqrt{x-1}-2=t\Rightarrow\sqrt{x-1}-3=t-1\)
\(|t|-|t-1|=1\)
\(th1:t-1+t=1\Rightarrow2t-1=1\Rightarrow2t=2\Rightarrow t=1\)
\(t=1\Rightarrow\sqrt{x-1}-2=1\Rightarrow\sqrt{x-1}=3\Rightarrow x-1=9\Rightarrow x=8\)
\(th2:-t-t+1=1\Rightarrow-2t=0\Rightarrow t=0\)
\(t=0\Rightarrow\sqrt{x-1}-2=0\Rightarrow\sqrt{x-1}=2\Rightarrow x-1=4\Rightarrow x=5\)
Vậy x = 8 : x = 5
Lời giải :
a) \(\sqrt{x^2\left(x-1\right)^2}=\left|x\right|\cdot\left|x-1\right|=-x\left(1-x\right)=x^2-x\)
b) \(\sqrt{13x}\cdot\sqrt{\frac{52}{x}}=\sqrt{\frac{13x\cdot52}{x}}=\sqrt{676}=26\)
c) \(5xy\cdot\sqrt{\frac{25x^2}{y^6}}=5xy\cdot\sqrt{\left(\frac{5x}{y^3}\right)^2}=5xy\cdot\frac{-5x}{y^3}=\frac{-25x^2}{y^2}\)
d) \(\sqrt{\frac{9+12x+4x^2}{y^2}}=\sqrt{\frac{\left(2x+3\right)^2}{y^2}}=\frac{2x+3}{-y}=\frac{-2x-3}{y}\)