rút gọn P=(\(\frac{2x^2+x-1}{1-x^2}\)-\(\frac{2x^3-x+x^2}{1-x^3}\)).\(\frac{x^2-x}{2x-1}\)+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2x-\frac{4-3x}{5}}{15}=\frac{7x-\frac{x-3}{2}}{5}-x+1\)
\(\Leftrightarrow\frac{2x}{15}-\frac{4-3x}{75}=\frac{7x}{5}-\frac{x-3}{10}-x+1\)
\(\Leftrightarrow\frac{2x}{15}-\frac{4-3x}{75}-\frac{7x}{5}+\frac{x-3}{10}+x-1=0\)
\(\Leftrightarrow\frac{20x-2\left(4-3x\right)-210x+15\left(x-3\right)+150x-150}{150}=0\)
\(\Leftrightarrow20x-8+6x-210x+15x-45+150x-150=0\)
\(\Leftrightarrow-19x-203=0\)
\(\Leftrightarrow x=-\frac{203}{19}\)
Vậy tập nghiệm của phương trình là \(S=\left\{-\frac{203}{19}\right\}\)
\(\)
\(\frac{2x-\frac{4-3x}{5}}{15}=\frac{7x-\frac{x-3}{2}}{5}-x+1\)
\(\Leftrightarrow\frac{2x}{15}-\frac{\frac{4-13x}{5}}{15}=\frac{7x}{5}-\frac{\frac{x-3}{2}}{5}-x+15\)
\(\Leftrightarrow\frac{2x}{15}-\frac{4-3x}{75}=\frac{7x}{5}-\frac{x-3}{10}-x+1\)
\(\Leftrightarrow\frac{2x}{15}-\frac{4-3x}{75}=\frac{2x}{5}-\frac{x-3}{10}+1\)
\(\Leftrightarrow20x-2\left(4-3x\right)=60x-15\left(x-3\right)+150\)
\(\Leftrightarrow20x-8+6x=60x-15x+45+150\)
\(\Leftrightarrow26x-8=49x+195\)
\(\Leftrightarrow-8=45x+195-26x\)
\(\Leftrightarrow-8=19x+195\)
\(\Leftrightarrow-8-195=19x\)
\(\Leftrightarrow-203=19x\)
\(\Leftrightarrow x=-\frac{203}{19}\)
vậy: tập nghiệm của phương trình là: \(S=\left\{-\frac{203}{19}\right\}\)
a, ĐKXĐ : x + 3 khác 0 => x khác - 3
b, x^2-9/x+3 = 5
=> x^2 - 9 = 5(x + 3)
=> x^2 - 9 = 5x + 15
=> x^2 - 5x - 9 - 15 = 0
=> x^2 - 5x - 24 = 0
=> x^2 + 3x - 8x - 24 = 0
=> x(x + 3) - 8(x + 3) = 0
=> (x - 8)(x + 3) = 0
=> x = 8 hoặc x = -3
c, x^2-9/x+3 = -6
=> x^2 - 9 = -6(x+3)
=> x^2 - 9 = -6x - 18
=> x^2 + 6x - 9 + 18 = 0
=> x^2 + 6x + 9 = 0
=> (x + 3)^2 = 0
=> x + 3 = 0
=> x = -3 (ktm)
vậy không có....
Đặt \(A=\frac{x^2-9}{x+3}\)
a) A xác định khi \(x+3\ne0\Leftrightarrow x\ne-3\)
b) A=\(\frac{x^2-9}{x+3}=\frac{\left(x-3\right)\left(x+3\right)}{x+3}=x-3\)
Để A=5 => x-3=5 => x=8 (TMĐK)
c) Có A=x-3 \(\left(x\ne-3\right)\)
\(\Rightarrow x+3=-6\)
\(\Rightarrow x=-9\)(TMĐK)
Vậy có gt của x để A nhận giá trị bằng -6