Tìm GTNN của biểu thức:
\(A=\sqrt{4x^2-4x+1}+\sqrt{4x^2-20x+25}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ngại làm lần 2 quá bạn ơi
Câu hỏi của Chuột yêu Gạo - Toán lớp 9 | Học trực tuyến
\(=\left(\sin^2\alpha+\cos^2\alpha\right)^2=1\)
\(a,\frac{\sqrt{5}}{\sqrt{3-\sqrt{5}}}=\frac{\sqrt{5}\left(\sqrt{3+\sqrt{5}}\right)}{\sqrt{\left(3-\sqrt{5}\right).\left(3+\sqrt{5}\right)}}\)
\(=\frac{\sqrt{5}\left(\sqrt{3+\sqrt{5}}\right)}{\sqrt{9-5}}=\frac{\sqrt{5}\left(\sqrt{3+\sqrt{5}}\right)}{\sqrt{4}}=\frac{\sqrt{5}\left(\sqrt{3+\sqrt{5}}\right)}{2}\)
\(a,\frac{2\sqrt{10}-5}{4-\sqrt{10}}=\frac{\left(2\sqrt{10}-5\right)\left(4+\sqrt{10}\right)}{\left(4-\sqrt{10}\right)\left(4+\sqrt{10}\right)}=\frac{20+6\sqrt{10}-5\sqrt{10}-9}{16-10}.\)
\(=\frac{11-\sqrt{10}}{6}\)
\(b,=\frac{\left(9-2\sqrt{2}\right)\left(3\sqrt{6}+2\sqrt{2}\right)}{\left(3\sqrt{6}-2\sqrt{2}\right)\left(3\sqrt{6}+2\sqrt{2}\right)}=\frac{\left(9-2\sqrt{2}\right)\left(3\sqrt{6}+2\sqrt{2}\right)}{54-8}\)
\(=\frac{\left(9-2\sqrt{2}\right)\left(3\sqrt{6}+2\sqrt{2}\right)}{46}\)
\(\sqrt{13-4\sqrt{3}}=\sqrt{12+1-2\sqrt{12}}=\sqrt{\left(\sqrt{12}-1\right)^2}=\sqrt{12}-1\)
\(\frac{\sqrt{4+\sqrt{7}}}{\sqrt{2}}=\frac{\sqrt{8+2\sqrt{7}}}{2}=\frac{\sqrt{7+1+2\sqrt{7}}}{2}=\frac{\sqrt{\left(\sqrt{7}+1\right)^2}}{2}=\frac{\sqrt{7}+1}{2}\)
\(\frac{\sqrt{10+3\sqrt{11}}}{2\sqrt{2}}=\frac{\sqrt{20+2\sqrt{99}}}{2}=\frac{\sqrt{9+11+2\sqrt{99}}}{2}=\frac{\sqrt{\left(\sqrt{9}+\sqrt{11}\right)^2}}{2}=\frac{\sqrt{9}+\sqrt{11}}{2}\)
\(A=\sqrt{4x^2-4x+1}+\sqrt{4x^2-20x+25}=\sqrt{\left(2x-1\right)^2}+\sqrt{\left(2x-5\right)^2}\)
\(A=\left|2x-1\right|+\left|5-2x\right|\ge\left|2x-1+5-2x\right|=4\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(2x-1\right)\left(5-2x\right)\ge0\)\(\Leftrightarrow\)\(\frac{1}{2}\le x\le\frac{5}{2}\)
Mấy bài bn đăng tương tự :)
Bài làm:
Ta có: \(A=\sqrt{4x^2-4x+1}+\sqrt{4x^2-20x+25}\)
\(A=\sqrt{\left(2x-1\right)^2}+\sqrt{\left(2x-5\right)^2}\)
\(A=\left|2x-1\right|+\left|2x-5\right|\)
\(A=\left|1-2x\right|+\left|2x-5\right|\)\(\ge\left|1-2x+2x-5\right|=\left|-4\right|=4\)
Dấu "=" xảy ra khi: \(\left(1-2x\right)\left(2x-5\right)\ge0\)
Giải BPT trên ra ta được \(\frac{5}{2}\ge x\ge\frac{1}{2}\)
Vậy \(Min\left(A\right)=4\Leftrightarrow\frac{5}{2}\ge x\ge\frac{1}{2}\)