K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Trước hết ta chứng minh các bđt : \(a^7+b^7\ge a^2b^2\left(a^3+b^3\right)\left(1\right)\)

Thật vậy:

\(\left(1\right)\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\left(a^4+a^3b+a^2b^2+ab^3+b^4\right)\ge0\)(luôn đúng)

Lại có : \(a^3+b^3+1\ge ab\left(a+b+1\right)\)

\(\Leftrightarrow a^3+b^3+abc\ge ab\left(a+b+1\right)\)

mà \(a^3+b^3\ge ab\left(a+b\right)\)

\(\Rightarrow a^3+b^3+abc\ge ab\left(a+b+1\right)\)(luôn đúng)

Áp dụng các bđt trên vào bài toán ta có

 ∑\(\frac{a^2b^2}{a^7+a^2b^2+b^7}\le\)\(\frac{a^2b^2}{a^3b^3\left(a+b+c\right)}\le\)\(\frac{a+b+c}{a+b+c}=1\)

Bất đẳng thức được chứng minh

Dấu "=" xảy ra khi a=b=c=1

28 tháng 2 2020

Em xem lại dòng thứ 4 và giải thích lại giúp cô với! ko đúng hoặc bị nhầm

28 tháng 2 2020

\(\left(2x+1-\frac{1}{1-2x}\right):\left(2-\frac{4x}{2x-1}\right)\)

\(=\frac{\left(2x+1\right)\left(2x-1\right)+1}{2x-1}:\frac{4x-2-4x}{2x-1}\)

\(=\frac{\left(2x+1\right)\left(2x-1\right)+1}{-2}\)

\(=\frac{\left(4x^2-1\right)+1}{-2}=\frac{4x^2}{-2}=-2x^2\)

28 tháng 2 2020

\(\left(2x+1-\frac{1}{1-2x}\right):\left(2-\frac{4x}{2x-1}\right)\)

\(\Leftrightarrow\left(\frac{\left(2x-1\right)\left(2x+1\right)+1}{2x-1}\right):\left(\frac{2\left(2x-1\right)-4x}{2x-1}\right)\)

\(\Leftrightarrow\left(\frac{4x^2-1+1}{2x-1}\right):\left(\frac{4x-2-4x}{2x-1}\right)\)

\(\Leftrightarrow\frac{4x^2}{2x-1}.\frac{2x-1}{-2}\Leftrightarrow\frac{4x^2}{-2}\Leftrightarrow-2x^2\)

28 tháng 2 2020

Ta có: \(a+b=1\Rightarrow2\sqrt{ab}\le1\Rightarrow\sqrt{ab}\le\frac{1}{2}\Rightarrow ab\le\frac{1}{4}\)

Lại có: \(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)

\(=a^2-ab+b^2=\left(a+b\right)^2-3ab\ge1-\frac{3}{4}=\frac{1}{4}\)

Dấu "=" xảy ra khi a = b = \(\frac{1}{2}\)

28 tháng 2 2020

\(VT-VP=\frac{4\left(a+1\right)\left(b+1\right)\left(a-b\right)^2+\left(2a^2+2b^2+a+b-2\right)^2}{4\left(a+b+2\right)}\ge0\)

Đẳng thức xảy ra khi \(a=b=\frac{1}{2}\)

28 tháng 2 2020

ĐK x khác 3

\(\frac{2\left(x+2\right)}{x-3}< 2\)

<=> \(\frac{2\left(x+2\right)}{x-3}-2< 0\)

<=> \(\frac{2x+4-2x+6}{x-3}< 0\)

<=> \(\frac{10}{x-3}< 0\)

<=> x - 3 < 0 

<=> x < 3 tm

Vậy x < 3

28 tháng 2 2020

Với đk trên ta có:

P = \(\frac{2}{x}-\left(\frac{x^2}{x^2+xy}+\frac{y^2-x^2}{xy}-\frac{y^2}{xy+y^2}\right).\frac{x+y}{x^2+xy+y^2}\)

\(=\frac{2}{x}-\left(\frac{x}{x+y}-\frac{\left(x-y\right)\left(x+y\right)}{xy}-\frac{y}{x+y}\right).\frac{x+y}{x^2+xy+y^2}\)

\(=\frac{2}{x}-\left(\frac{x-y}{x+y}-\frac{\left(x-y\right)\left(x+y\right)}{xy}\right).\frac{x+y}{x^2+xy+y^2}\)

\(=\frac{2}{x}-\frac{x-y}{xy}.\left(xy-\left(x+y\right)^2\right).\frac{1}{x^2+xy+y^2}\)

\(=\frac{2}{x}+\frac{x-y}{xy}\)

\(=\frac{x+y}{xy}\)

28 tháng 2 2020

Có: M(Cu) = 64x ; M(O) =16y

=> \(\frac{64x}{16y}=\frac{4}{1}\Rightarrow\frac{x}{y}=1\)

=> Công thức: CuO

Điều chế: CuO + H2 ------> Cu + H2O ( ở nhiệt độ 400oC)

          Hoặc: 3CuO +2 Al  ---------> Al2O3 + 3Cu  

              CuO + H2SO4 ---------> CuSO4 + H2O

28 tháng 2 2020

Gọi M là trung điểm BC thì A,G,M thẳng hàng và AG=2GM

Từ B,C vẽ 2 đường thẳng song song với EF cắt AM lần lượt tại D và N

Ta có:

\(\frac{AE}{BE}+\frac{CF}{AF}=\frac{DG}{AG}+\frac{NG}{AG}\)

CMĐ: \(\Delta BDM=\Delta CNM\left(gcg\right)\)

=> DM=MN

Do GD+NG=DG+DG+CM+MN=(DG+DM)+(GM+MN)=2(DM+DM)=2GM=AG

Do đó

\(\frac{BE}{AE}+\frac{CF}{AF}=\frac{DG}{AG}+\frac{NG}{AG}=\frac{DG+NG}{AG}=\frac{AG}{AG}=1\)

1 tháng 2 2022

Tại s GD+NG=DG+DG+CM+MN =(DG+DM)+(GM+MN)=2(DM+DM)=2GM ạ

28 tháng 2 2020

A B C M D F E

Kẻ MF // BC; F \(\in\)AC mà D \(\in\)AC nên F cũng \(\in\)DC

Xét \(\Delta\)DBC có : M là trung điểm của DB ( gt ); MF // BC ( F \(\in\)DC )

\(\Rightarrow\)F là trung điểm của DC ( Định lí 1 )

Lại xét \(\Delta\)DBC có : M là trung điểm của DB ( gt ); F là trung điểm của DC ( cmt )

\(\Rightarrow\)MF là đường trung bình của  \(\Delta\)DBC ( Định nghĩa )

\(\Rightarrow MF=\frac{1}{2}BC\Rightarrow\frac{MF}{BC}=\frac{1}{2}\)( Định lý 2 ) (*)

Vì \(\frac{AD}{DC}=\frac{1}{2}\); F là trung điểm của DC hay \(\frac{FD}{DC}=\frac{FC}{DC}=\frac{1}{2}\) \(\Rightarrow\)AD = DF = FC \(\Rightarrow\frac{\text{AF}}{AC}=\frac{AD+\text{AF}}{AC}=\frac{2\cdot AD}{AC}=\frac{2\cdot1}{3}=\frac{2}{3}\)

Xét \(\Delta\)AEC ( MF // EC vì MF // BC mà E \(\in\)BC ) ta có :

\(\frac{\text{AF}}{AC}=\frac{MF}{EC}=\frac{2}{3}\)( Áp dụng định lý Ta-lét ) (**)

Ta lại có : \(\frac{MF}{BC}:\frac{MF}{EC}=\frac{MF\cdot EC}{BC\cdot MF}=\frac{EC}{BC}\)(***)

Từ (*)(**)(***) nên ta có : \(\frac{EC}{BC}=\frac{1}{2}:\frac{2}{3}=\frac{1\cdot3}{2\cdot2}=\frac{3}{4}\)\(\Rightarrow\frac{EB}{BC}=1-\frac{3}{4}=\frac{1}{4}\)

\(\Rightarrow\frac{EC}{EB}=\frac{3}{1}=3\)

28 tháng 2 2020

A B C H D E F

a) Áp dụng định lý Py-ta-go vào tam giác ABC vuông tại A ta được:

\(AB^2+AC^2=BC^2\)

\(\Rightarrow BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)

Xét tam giác ABC có AD là đường phân giác trong của tam giác ABC (gt)

\(\Rightarrow\frac{BD}{DC}=\frac{AB}{AC}\left(tc\right)\)

\(\Rightarrow\frac{BD}{DC}=\frac{3}{4}\)

\(\Rightarrow\frac{BD}{3}=\frac{DC}{4}=\frac{BD+DC}{3+4}\frac{10}{7}\)(tính chất của dãy tỉ số bằng nhau )

\(\Rightarrow\hept{\begin{cases}BD=\frac{10}{7}.3=\frac{30}{7}\left(cm\right)\\DC=\frac{10}{7}.4=\frac{40}{7}\left(cm\right)\end{cases}}\)

b)Ta có: \(S_{ABC}=\frac{1}{2}AB.AC=\frac{1}{2}AH.BC\)

\(\Rightarrow AB.AC=AH.BC\left(đpcm\right)\)

c) Xét tam giác ADB có DE là đường phân giác trong của tam giác ADB(gt)

\(\Rightarrow\frac{EA}{EB}=\frac{AD}{BD}\left(tc\right)\)

Xét tam giác ADC có DF là đường phân giác trong của tam giác ADC (gt)

\(\Rightarrow\frac{FC}{FA}=\frac{DC}{DA}\left(tc\right)\)

\(\Rightarrow\frac{EA}{EB}.\frac{DB}{DC}.\frac{FC}{FA}=\frac{AD}{BD}.\frac{DB}{DC}.\frac{DC}{DA}=1\left(đpcm\right)\)