14. Cho tam giác ABC ,có đường cao AH ;đường thẳng d//BC ;cắt các cạnh AB,AC và
đường cao AH theo thứ tự các điểm M;N;K
a. CMR: \(\frac{AK}{AH}=\frac{MN}{BC}\)
b. Cho biết AK =\(\frac{2}{3}\)AH và diện tích D ABC là 5cm2.
Tính diện tích tam giác AMN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tham khảo nha
Câu hỏi của Nguyễn Quỳnh Nga - Toán lớp 8 | Học trực tuyến
a) Tứ giác BHCDBHCD có:
BH//DCBH//DC (do cùng ⊥AC⊥AC)
CH//BDCH//BD (do cùng ⊥AB⊥AB)
⇒BHCD⇒BHCD là hình bình hành (dấu hiệu nhận biết)
b) Do BHCDBHCD là hình bình hành gọi HD∩BC=I⇒IHD∩BC=I⇒I là trung điểm cạnh HD (1)
Gọi HE∩BC=G,ΔBHEHE∩BC=G,ΔBHE có BGBG vừa là đường cao vừa là trung tuyến nên ΔBHEΔBHE cân đỉnh B
⇒GH=GE⇒G⇒GH=GE⇒G là trung điểm cạnh HEHE (2)
Từ (1) và (2) ⇒IG⇒IG là đường trung bình của ΔHEDΔHED
⇒IG//ED⇒BC//ED⇒IG//ED⇒BC//ED (đpcm)
A B C D N P M
Vì\(\hept{\begin{cases}AB\perp BC\left(\widehat{B}=90^0\right)\\MN\perp BC\left(gt\right)\end{cases}\Rightarrow AB//MN}\)( từ vuông góc đến song song )
Xét tam giác ABC có: \(AB//MN\left(cmt\right)\)
\(\Rightarrow\frac{MN}{AB}=\frac{MC}{AC}\)( hệ quả của định lý Ta-let)
Vì \(\hept{\begin{cases}AD\perp DC\left(\widehat{D}=90^0\right)\\MP\perp AD\left(gt\right)\end{cases}\Rightarrow}MP//DC\)( từ vuông góc đến song song )
Xét tam giác ADC có \(MP//DC\left(cmt\right)\)
\(\Rightarrow\frac{MP}{CD}=\frac{AM}{AC}\)( hệ quả của định lý Ta-let)
\(\Rightarrow\frac{MN}{AB}+\frac{MP}{CD}=\frac{MC}{AC}+\frac{AM}{AC}=\frac{AC}{AC}=1\left(đpcm\right)\)
kẻ BD
ta có HA=HD
EA=EB
=> HE là đg tb cuả tam giác ABD
=> HE//BD; HE=1/2BD (1)
cmtt ta có GF là đg tb cuả tam giác CBD
=> GF//BD;GF=1/2BD (2)
Từ (1)và (2)
=>HE=GF(=1/2BD); HE//GF(//BD)
=> EFGH là hình bình hành
a) \(\frac{2-x}{2016}-1=\frac{1-x}{2017}-\frac{x}{2018}\)
\(\Leftrightarrow\frac{2-x}{2016}+1=\frac{1-2}{2017}+1-\frac{x}{2018}+1\)
\(\Leftrightarrow\frac{2018-x}{2016}=\frac{2018-x}{2017}+\frac{2018-x}{2018}\)
\(\Leftrightarrow\frac{2018-x}{2016}-\frac{2018-x}{2017}-\frac{2018-x}{2018}=0\)
\(\Leftrightarrow\left(2018-x\right)\left(\frac{1}{2016}-\frac{1}{2017}-\frac{1}{2018}\right)=0\)
\(\Leftrightarrow2018-x=0\) ( vì \(\frac{1}{2016}-\frac{1}{2017}-\frac{1}{2018}\ne0\))
\(\Leftrightarrow x=2018\)
Vậy nghiệm của pt x=2018
b)\(\frac{x-19}{1999}+\frac{x-23}{1995}+\frac{x+82}{700}=5\)
\(\Leftrightarrow\left(\frac{x-19}{1999}-1\right)+\left(\frac{x-23}{1995}+-1\right)+\left(\frac{x+82}{700}-3\right)=0\)
\(\Leftrightarrow\frac{x-2018}{1999}+\frac{x-2018}{1995}+\frac{x-2018}{700}=0\)
\(\Leftrightarrow\left(x-2018\right)\left(\frac{1}{1999}+\frac{1}{1995}+\frac{1}{700}\right)=0\)
\(\Leftrightarrow x-2018=0\)( vì \(\frac{1}{1999}+\frac{1}{1995}+\frac{1}{700}\ne0\))
\(\Leftrightarrow x=2018\)
Vậy nghiệm của pt x=2018
c) \(x^3-3x^2+4=0\)
\(\Leftrightarrow x^3+x^2-4x^2+4=0\)
\(\Leftrightarrow x^2\left(x+1\right)-4\left(x^2-1\right)=0\)
\(\Leftrightarrow x^2\left(x+1\right)-4\left(x+1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-2\right)^2=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\\left(x-2\right)^2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=2\end{cases}}}\)
Vậy tập hợp nghiệm \(S=\left\{-1;2\right\}\)
A B C M P O R H Q K N
a) Xét tam giác ABH có: P là trung điểm của AB(gt),Q là trung điểm của AH (gt)
\(\Rightarrow PQ\)là đường trung bình của tam giác ABH
\(\Rightarrow PQ//BH\left(tc\right)\)(1)
Vì \(\hept{\begin{cases}BH\perp AC\\OR\perp AC\end{cases}\Rightarrow BH//}OR\)( từ vuông góc đến song song ) (2)
Từ (1) và (2) \(\Rightarrow PQ//OR\)
Ta có:\(\hept{\begin{cases}OP\perp AB\\CH\perp AB\end{cases}\Rightarrow OP//CH}\)( từ vuông góc đến song song ) (3)
Xét tam giác AHC có Q là trung điểm của AH(gt),R là trung điểm của AC(gt)
\(\Rightarrow QR\)là đường trung bình của tam giác AHC
\(\Rightarrow QR//HC\left(tc\right)\left(4\right)\)
Từ (3) và (4) \(\Rightarrow OP//QR\)
Xét tứ giác PQRO có
\(\hept{\begin{cases}PQ//OR\left(cmt\right)\\OP//QR\left(cmt\right)\end{cases}}\Rightarrow PQRO\)là hình bình hành (dhnb)
b) Để PQRO là hình bình hành \(\Leftrightarrow BH=HC\)
Xét tam giác BHK và tam giác CHK có:
\(\hept{\begin{cases}\widehat{HKB}=\widehat{HKC}=90^0\\HKchung\\BH=HC\left(cmt\right)\end{cases}\Rightarrow\Delta BHK=\Delta CHK\left(ch-cgv\right)}\)
\(\Rightarrow BK=KC\)( 2 cạnh t.ứng )
\(\Rightarrow K\)là trung điểm của BC ( vì K thuộc BC)
Mà M là trung điểm của BC (gt)
\(\Rightarrow K\equiv M\)
Xét tam giác ABC có AK vừa là đường cao vừa là trung tuyến của tam giác ABC
\(\Rightarrow\Delta ABC\)cân tại A.
Vậy để PQRO là hình thoi thì tam giác ABC phải cân tại A.