K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2020

2/\(ĐKXĐ:x\ne-1\)

\(Q=\frac{2x^2+2}{\left(x+1\right)^2}=\frac{2\left(x+1\right)^2-4\left(x+1\right)+4}{\left(x+1\right)^2}\)

  \(=2-\frac{4}{x+1}+\frac{4}{\left(x+1\right)^2}\)

Đặt \(\frac{2}{x+1}=t\)

\(\Rightarrow Q=t^2-2t+2=\left(t-1\right)^2+1\ge1\forall t\)

\(\Rightarrow minQ=1\Leftrightarrow t=1\)

                           \(\Leftrightarrow\frac{2}{x+1}=1\)

                         \(\Leftrightarrow x=1\left(tmđkxđ\right)\)             

29 tháng 2 2020

Ta có: \(a^2+b^2\ge\frac{\left(a+b\right)^2}{2}=\frac{2^2}{2}=2\)

=> \(A\le\frac{2019}{2.2+2016}=\frac{2019}{2020}\)

Dấu "=" xảy ra <=> a = b = 1

28 tháng 2 2020

x(x2+6x+9) - 3x= x3+6x2+12x+8+1

\(\Leftrightarrow\)x3+6x2+9x-3x=x3+6x2+12x+9

\(\Leftrightarrow\)6x=12x+9

\(\Leftrightarrow\)6x=-9

\(\Leftrightarrow\)x=-3/2

Vậy phương trình có 1 nghiệm duy nhất x=-3/2

28 tháng 2 2020

x(x + 3)^2  - 3x = (x + 2)^3 + 1

<=> x(x^2 + 6x + 9) = x^3 + 6x^2 + 12x + 8 + 1

<=> x^3 + 6x^2 + 9x = x^3 + 6x^2 + 12x + 9

<=> 3x + 9 = 0

<=> 3x = -9

<=> x = -3

Cho tam giác ABC vuông tại A, đường trung tuyến AM. Kẻ MD vuông góc với AB (D thuộc AB ),ME vuông góc với AC                                                                                                                                                                                            a) Chứng minh tứ giác ADME là hình chữ nhật.b) Kẻ đường cao AH của tam giác ABC. Lấy điểm F đối xứng với A qua H và kẻ điểm K đốixứng...
Đọc tiếp

Cho tam giác ABC vuông tại A, đường trung tuyến AM. Kẻ MD vuông góc với AB (D thuộc AB ),

ME vuông góc với AC                                                                                                                                                                                            a) Chứng minh tứ giác ADME là hình chữ nhật.

b) Kẻ đường cao AH của tam giác ABC. Lấy điểm F đối xứng với A qua H và kẻ điểm K đối

xứng với B qua H. Chứng minh tứ giác ABFK là hình thoi                                                                                                                                 c , cm : AK vuông góc với CF

0

\(\left(x-3\right)^3-2\left(x-1\right)=x\left(x-2\right)^2-5x^2\)

\(\Leftrightarrow x^3-6x^2+9x-3x^2+18x-27-2x+2=x^3-4x^2+4x-5x^2\)

\(\Leftrightarrow x^3-9x^2+25x-25=x^3-9x^2+4x-5x^2\)

\(\Leftrightarrow x^3-9x^2+25x-25=x^3-9x^2+4x\)

\(\Leftrightarrow-9x^2+25x-25=-9x^2+4x\)

\(\Leftrightarrow25x-25=4x\)

\(\Leftrightarrow-25=4x-25x\)

\(\Leftrightarrow-25=-21x\)

\(\Leftrightarrow x=\frac{21}{25}\)

28 tháng 2 2020

\(Pt\Leftrightarrow x^3-1-3x^2+3x-2x+2-x^3+4x^2-4x+5x^2=0\)

\(\Leftrightarrow6x^2-5x+1=0\)

\(\Leftrightarrow x=\frac{3\pm\sqrt{3}}{6}\)

52-5=25-5=20 không chia hết cho 6 nhé

28 tháng 2 2020

\(\left(2x-1\right)^2+5=\left(2x+3\right)\left(2x-3\right)-x\)

\(\Leftrightarrow4x^2-4x+1+5=4x^2-9-x\)

\(\Leftrightarrow4x^2-4x^2-4x+x=-9-5-1\)

\(\Leftrightarrow-3x=-15\)

\(\Leftrightarrow x=5\)

Vậy x=5